Skip to main content

Advertisement

Log in

Effects of ageing on metabolite and oxidant concentrations in different regions of rat kidney under normal and stress conditions

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Metabolic and oxidative stresses have been implicated in ageing and the pathogenesis of chronic kidney disease. In this study, we investigated the glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and lactate concentrations in different kidney regions under control conditions and after exposure to oxidative stress invoked by 0.2 mM H2O2. Slices of superficial cortex, outer or inner medulla were dissected from kidneys of male Wistar rats of 5-, 12-, 36- and 60-week old. Samples were incubated for 30 min ± 0.2 mM H2O2 prior to homogenisation and centrifugation. The concentrations of GSH, TBARS and lactate were measured by colorimetry. Each metabolite showed a distinctive pattern. For GSH, this was 12 weeks > 36 weeks > 60 weeks and 5 weeks with the highest concentration measured in the superficial cortex at 12 weeks. For TBARS and lactate, the pattern was for the lowest concentration at 12 weeks and the highest at 60 and 5 weeks. The highest lactate and TBARS concentrations were measured under oxidative stress conditions, particularly at 5 and 60 weeks. These results suggest that GSH in different kidney regions peaks at maturity and then reduces with increasing age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GSH:

Glutathione

TBARS:

Thiobarbituric acid reactive species

ROS:

Reactive oxygen species

\({\text{O}}_{2}^{ - \cdot}\) :

Superoxide

OH· :

Hydroxyl radical

\({\text{O}}_{2}^{1}\) :

Singlet oxygen

GSSG:

Oxidised glutathione

MDA:

Malondialdehyde

PBS:

Phosphate buffered saline

BSA:

Bovine serum albumin

References

  1. Sonntag C (1987) The chemical basis of radiation biology. Taylor & Francis, London

    Google Scholar 

  2. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic oxidative stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  3. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724

    Article  CAS  PubMed  Google Scholar 

  4. Dalle-Donne I, Giustarini D, Colombo R, Rossi Milzano A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176

    Article  CAS  PubMed  Google Scholar 

  5. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative oxidative stress and antioxidant defense. WAO J 5:9–19

    CAS  Google Scholar 

  6. Anathy V, Roberson LC, Guala AS, Godburn KE, Budd RC, Janssen-Heininger YMW (2012) Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death. Antioxid Redox Signal 16:496–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  8. Mates JM, Segura JA, Alonso FJ, Marrquez J (2012) Sulphur-containing non enzymatic antioxidants: therapeutic tools against cancer. Front Biosci 4:722–748

    Article  Google Scholar 

  9. Simic MG, Nygaard OF (1983) Radioprotectors and anticarcinogens. Academic Press, New York

    Google Scholar 

  10. Reed DJ (1990) Glutathione: toxicological implications. Annu Rev Pharmacol Toxicol 30:603–631

    Article  CAS  PubMed  Google Scholar 

  11. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    Article  CAS  PubMed  Google Scholar 

  12. Delfino RJ, Staimer N, Vaziri ND (2011) Air pollution and circulating biomarkers of oxidative oxidative stress. Air Qual Atmos Health 4:37–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lunec J (1989) Oxygen radicals: their measurement in vivo. Anal Proc 26:130–131

    CAS  Google Scholar 

  14. Pryor WA (1989) On the detection of lipid hydroperoxides in biological samples. Free Radic Biol Med 7:177–178

    Article  CAS  PubMed  Google Scholar 

  15. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mizock BA, Falk JL (1992) Lactic acidosis in critical illness. Crit Care Med 20:80–93

    Article  CAS  PubMed  Google Scholar 

  17. Bellomo R (2002) Bench-to-bedside review: lactate and the kidney. Crit Care 6:322

    Article  PubMed Central  PubMed  Google Scholar 

  18. Höhmann B, Frohnert PP, Kinne R, Bauman K (1974) Proximal tubular lactate transport in rat kidney: a micropuncture study. Kidney Int 5:261–270

    Article  PubMed  Google Scholar 

  19. Buege JA (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  20. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  21. Williams H, King N, Griffiths EJ, Suleiman M-S (2001) Glutamate-loading stimulates metabolic flux and improves cell recovery following chemical hypoxia in isolated cardiomyocyte. J Mol Cell Cardiol 33:2109–2119

    Article  CAS  PubMed  Google Scholar 

  22. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative oxidative stress and neurodegeneration. FEBS J 267:4904–4911

    Article  CAS  Google Scholar 

  23. Farooqui MY, Day MW, Zamorano DM (1987) Gluthathione and lipid peroxidation in the aging rat. Comp Biochem Physiol Part B 88:177–180

    Article  CAS  Google Scholar 

  24. Currais A, Maher P (2013) Functional consequences of age-dependent changes in glutathione status in the brain. Antioxid Redox Signal 19:813–822

    Article  CAS  PubMed  Google Scholar 

  25. Jozwiak Z, Jasnowska B (1985) Changes in oxygen-metabolizing enzymes and lipid peroxidation in human erythrocytes as a function of age of donor. Mech Ageing Dev 32:77–83

    Article  CAS  PubMed  Google Scholar 

  26. Imanishi H, Nakai T, Abe T, Takino T (1985) Glutathione metabolism in red cell aging. Mech Ageing Dev 32:57–62

    Article  CAS  PubMed  Google Scholar 

  27. Louboutin J-P, Strayer D (2014) Role of oxidative oxidative stress in HIV-1-associated neurocognitive disorder and protection by gene delivery of antioxidant enzymes. Antiox 3:770–797

    Article  Google Scholar 

  28. Jain A, Martensson J, Stole E, Auld PA, Meister A (1991) Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci 88:1913–1917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Rook D, van Goudoever JB (2014) Oxidative stress and glutathione synthesis rates in early postnatal life. In: Perinatal and prenatal disorders. Springer, New York, pp 255–269

  30. Subramanian MV, James T (2010) Age-related protective effect of deprenyl on changes in the levels of diagnostic marker enzymes and antioxidant defense enzymes activities in cerebellar tissue in Wistar rats. Cell Ox Stress Chaperones 15:743–751

    Article  CAS  Google Scholar 

  31. Anandan R, Ganesan B, Obolesu T, Matthew S, Asha KK, Lakshmanan PT, Zynudheen AA (2013) Antiaging effect of dietary chitosan supplementation on glutathione-dependent antioxidant system in young and aged rats. Cell Stress Chaperones 18:121–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rana S, Allen T, Singh R (2002) Inevitable glutathione, then and now. Indian J Exp Biol 40:706–716

    CAS  PubMed  Google Scholar 

  33. Baird M, Samis H (1971) Regulation of catalase activity in mice of different ages. Gerontol 17:105–115

    Article  CAS  Google Scholar 

  34. Hazelton GA, Lang CA (1985) Glutathione peroxidase and reductase activities in the aging mouse. Mech Ageing Dev 29:71–81

    Article  CAS  PubMed  Google Scholar 

  35. Ito Y, Kajkenova O, Feuers RJ, Udupa KB, Desai VG, Epstein J, Hart RW, Lipschitz DA (1998) Impaired glutathione peroxidase activity accounts for the age-related accumulation of hydrogen peroxide in activated human neutrophils. J Gerontol Ser A 53:M169–M175

    Article  CAS  Google Scholar 

  36. Marí M, Morales A, Collel A, Garcia-Ruiz C, Kaplowitz N, Fernandes-Checa JC (2013) Mitochondrial glutathione: features, regulation and role in disease. Biochim et Biophys Acta 1830:3317–3328

    Article  Google Scholar 

  37. Martensson J, Meister A, Martensson J (1991) Glutathione deficiency decreases tissue ascorbate levels in newborn rats: ascorbate spares glutathione and protects. Proc Natl Acad Sci 88:4656–4660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gecit İ, Kavak S, Meral I, Pirincci N, Gunes M, Demir H, Cengiz N, Ceylan K (2011) Effects of shock waves on oxidative oxidative stress, antioxidant enzyme and element levels in kidney of rats. Biol Trace Elem Res 144:1069–1076

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y-F, Cowley AW Jr, Zou A-P (2003) Increased H2O2 counteracts the vasodilator and natriuretic effects of superoxide dismutation by tempol in renal medulla. Am J Physiol 285:R827–R833

    CAS  Google Scholar 

  40. Zou C-G, Agar NS, Jones GL (2001) Oxidative insult to human red blood cells induced by free radical initiator AAPH and its inhibition by a commercial antioxidant mixture. Life Sci 69:75–86

    Article  CAS  PubMed  Google Scholar 

  41. Halliwell B, Gutteridge J (1989) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  Google Scholar 

  42. Choi J-H, Yu BP (1990) Unsuitability of TBA test as a lipid peroxidation marker due to prostaglandin synthesis in the aging kidney. Age 13:61–64

    Article  CAS  Google Scholar 

  43. Boaz M, Matas Z, Biro A, Katzir Z, Green M, Fainaru M, Smetana S (1999) Serum malondialdehyde and prevalent cardiovascular disease in hemodialysis. Kidney Int 56:1078–1083

    Article  CAS  PubMed  Google Scholar 

  44. Sheng B, He D, Zhou J, Chen X, Nan X (2011) The protective effects of the traditional Chinese herbs against renal damage induced by extracorporeal shock wave lithotripsy: a clinical study. Urol Res 39:89–97

    Article  PubMed  Google Scholar 

  45. Shih P-H, Yen G-C (2007) Differential expressions of antioxidant status in aging rats: the role of transcriptional factor Nrf2 and MAPK signaling pathway. Biogerontology 8:71–80

    Article  CAS  PubMed  Google Scholar 

  46. Rao G, Xia E, Richardson A (1990) Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mech Ageing Dev 53:49–60

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was conducted at the University of New England, Australia and supported by a grant from the School of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham L. Jones.

Ethics declarations

Conflict of interest

The authors declare that there are no potential conflicts of interest involved in the publication of this work

Animal ethics

All experiments were approved by the animal ethics committee of the UNE (AEC09/152, EC10/036 and AEC11/100).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiab, N.R., King, N. & Jones, G.L. Effects of ageing on metabolite and oxidant concentrations in different regions of rat kidney under normal and stress conditions. Mol Cell Biochem 408, 55–61 (2015). https://doi.org/10.1007/s11010-015-2482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2482-3

Keywords

Navigation