Skip to main content

Advertisement

Log in

SRD5A2 gene expression inhibits cell migration and invasion in prostate cancer cell line via F-actin reorganization

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Steroid 5-alpha reductase type 2 (SRD5A2) gene is important for normal development and functioning of prostate gland but it is reported to be silenced in metastatic prostate cancer. We showed that exogenous SRD5A2 expression in prostate cancer cell line reduced cell migration and invasion. Additionally, the stable transfectants showed enhanced adhesion to the matrix accompanied by changes in cytoskeletal organization, involving actin polymerization. siRNA knockdown of the endogenous SRD5A2 mRNA in LnCAP cells was effective, it reversed the phenotype, and thus induced cell motility. The MEK1 and pERK1/2 levels were found to be reduced in SRD5A2-expressing cells. Further, the reduced level of p38 protein was correlated with low expression of MMP-2 and MMP-7 genes. The results suggest that SRD5A2 controls cell migration by indirectly regulating ERK/MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andersson S, Bishop RW, Russell DW (1989) Expression cloning and regulation of steroid 5 alpha-reductase, an enzyme essential for male sexual differentiation. J Biol Chem 264(27):16249–16255

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Andersson S et al (1991) Deletion of steroid 5 alpha-reductase 2 gene in male pseudohermaphroditism. Nature 354(6349):159–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Thigpen AE et al (1992) Molecular genetics of steroid 5 alpha-reductase 2 deficiency. J Clin Investig 90(3):799–809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Russell DW, Wilson JD (1994) Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem 63:25–61

    Article  CAS  PubMed  Google Scholar 

  5. Titus MA et al (2005) Steroid 5alpha-reductase isozymes I and II in recurrent prostate cancer. Clin Cancer Res 11(12):4365–4371

    Article  CAS  PubMed  Google Scholar 

  6. Thomas LN et al (2003) 5alpha-reductase type 1 immunostaining is enhanced in some prostate cancers compared with benign prostatic hyperplasia epithelium. J Urol 170(5):2019–2025

    Article  CAS  PubMed  Google Scholar 

  7. Thomas LN et al (2005) Differential alterations in 5alpha-reductase type 1 and type 2 levels during development and progression of prostate cancer. Prostate 63(3):231–239

    Article  CAS  PubMed  Google Scholar 

  8. Habib FK et al (2003) The loss of 5alpha-reductase type I and type II mRNA expression in metastatic prostate cancer to bone and lymph node metastasis. Clin Cancer Res 9(5):1815–1819

    CAS  PubMed  Google Scholar 

  9. Bjelfman C et al (1997) Differential gene expression of steroid 5 alpha-reductase 2 in core needle biopsies from malignant and benign prostatic tissue. J Clin Endocrinol Metab 82(7):2210–2214

    CAS  PubMed  Google Scholar 

  10. Soderstrom TG et al (2001) Messenger ribonucleic acid levels of steroid 5 alpha-reductase 2 in human prostate predict the enzyme activity. J Clin Endocrinol Metab 86(2):855–858

    CAS  PubMed  Google Scholar 

  11. Kosaka T et al (2013) Human castration resistant prostate cancer rather prefer to decreased 5alpha-reductase activity. Sci Rep 3:1268

    Article  PubMed Central  PubMed  Google Scholar 

  12. Titus MA et al (2014) 5alpha-reductase type 3 enzyme in benign and malignant prostate. Prostate 74(3):235–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gormley GJ et al (1990) Effects of finasteride (MK-906), a 5 alpha-reductase inhibitor, on circulating androgens in male volunteers. J Clin Endocrinol Metab 70(4):1136–1141

    Article  CAS  PubMed  Google Scholar 

  14. Feneley MR et al (1999) A prospective randomized trial evaluating tissue effects of finasteride therapy in benign prostatic hyperplasia. Prostate Cancer Prostatic Dis 2(5/6):277–281

    Article  CAS  PubMed  Google Scholar 

  15. Span PN et al (1999) Selectivity of finasteride as an in vivo inhibitor of 5alpha-reductase isozyme enzymatic activity in the human prostate. J Urol 161(1):332–337

    Article  CAS  PubMed  Google Scholar 

  16. Clark RV et al (2004) Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5alpha-reductase inhibitor. J Clin Endocrinol Metab 89(5):2179–2184

    Article  CAS  PubMed  Google Scholar 

  17. Rittmaster R et al (2008) Effect of dutasteride on intraprostatic androgen levels in men with benign prostatic hyperplasia or prostate cancer. Urology 72(4):808–812

    Article  PubMed  Google Scholar 

  18. Andriole G et al (1995) Treatment with finasteride following radical prostatectomy for prostate cancer. Urology 45(3):491–497

    Article  CAS  PubMed  Google Scholar 

  19. Paller CJ, Smith TJ (2012) Finasteride and prostate cancer: a commentary. Oncologist 17(7):888–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Shah SK et al (2009) Phase II study of dutasteride for recurrent prostate cancer during androgen deprivation therapy. J Urol 181(2):621–626

    Article  PubMed Central  PubMed  Google Scholar 

  21. Dogra N, Mukhopadhyay T (2012) Impairment of the ubiquitin-proteasome pathway by methyl N-(6-phenylsulfanyl-1H-benzimidazol-2-yl)carbamate leads to a potent cytotoxic effect in tumor cells: a novel antiproliferative agent with a potential therapeutic implication. J Biol Chem 287(36):30625–30640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Nakamura S, Roth JA, Mukhopadhyay T (2000) Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol Cell Biol 20(24):9391–9398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11(9):633–643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zaidel-Bar R et al (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 116(Pt 22):4605–4613

    Article  CAS  PubMed  Google Scholar 

  25. Yamazaki D, Kurisu S, Takenawa T (2005) Regulation of cancer cell motility through actin reorganization. Cancer Sci 96(7):379–386

    Article  CAS  PubMed  Google Scholar 

  26. Olson MF, Sahai E (2009) The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 26(4):273–287

    Article  PubMed  Google Scholar 

  27. Rottner K, Stradal TE (2011) Actin dynamics and turnover in cell motility. Curr Opin Cell Biol 23(5):569–578

    Article  CAS  PubMed  Google Scholar 

  28. Sun J et al (2011) Fascin protein is critical for transforming growth factor beta protein-induced invasion and filopodia formation in spindle-shaped tumor cells. J Biol Chem 286(45):38865–38875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Viala E, Pouyssegur J (2004) Regulation of tumor cell motility by ERK mitogen-activated protein kinases. Ann N Y Acad Sci 1030:208–218

    Article  PubMed  Google Scholar 

  30. Choi C, Helfman DM (2014) The Ras-ERK pathway modulates cytoskeleton organization, cell motility and lung metastasis signature genes in MDA-MB-231 LM2. Oncogene 33(28):3668–3676

    Article  CAS  PubMed  Google Scholar 

  31. Pergolizzi RG et al (1993) Mutational status of codons 12 and 13 of the N- and K-ras genes in tissue and cell lines derived from primary and metastatic prostate carcinomas. Cancer Investig 11(1):25–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the University Grants Commission and Indian Council of Agricultural Research, Government of India (to TM) and research fellowship from the Council of Scientific and Industrial Research, Government of India (to SA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas Mukhopadhyay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3917 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, S., Singh, M., Kumar, A. et al. SRD5A2 gene expression inhibits cell migration and invasion in prostate cancer cell line via F-actin reorganization. Mol Cell Biochem 408, 15–23 (2015). https://doi.org/10.1007/s11010-015-2478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2478-z

Keywords

Navigation