Skip to main content

Advertisement

Log in

Myricetin induces apoptosis by inhibiting P21 activated kinase 1 (PAK1) signaling cascade in hepatocellular carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma is one of the most common malignancies worldwide and evidence suggests that Ras signaling regulates various hallmarks of cancer via regulating several effector pathways such as ERK and PI3K. The aim of the present study is to understand the efficacy of a flavonoid myricetin for the first time in inhibiting the downstream target p21 activated kinase 1 (PAK1) of Ras signaling pathway in hepatocellular carcinoma. The analysis of gene expression revealed that myricetin inhibits PAK1 by abrogating the Ras-mediated signaling by decelerating Wnt signaling, the downstream of Erk/Akt, thereby inducing intrinsic caspase-mediated mitochondrial apoptosis by downregulating the expression of anti-apoptotic Bcl-2 and survivin and upregulating pro-apoptotic Bax. The results also provide striking evidence that the myricetin inhibits the development of HCC by inhibiting PAK1 via coordinate abrogation of MAPK/ERK and PI3K/AKT and their downstream signaling Wnt/β-catenin pathway, thus being a promising candidate for cancer prevention and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  3. Anzola M (2004) Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis. J Viral Hepat 11:383–393

    Article  CAS  PubMed  Google Scholar 

  4. Fattovich G, Stroffolini T, Zagni I, Donato F (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127:S35–S50

    Article  PubMed  Google Scholar 

  5. Bosch FX, Ribes J, Cleries R, Diaz M (2005) Epidemiology of hepatocellular carcinoma. Clin Liver Dis 9:191–211

    Article  PubMed  Google Scholar 

  6. Buchmann A, Bauer-Hoffmann R, Mahr J, Drinkwater NR, Luz A, Schwarz M (1991) Mutational activation of c-Ha-ras gene in liver tumors of different rodent strains: correlation with susceptibility to hepatocarcinogenesis. Proc Natl Acad Sci USA 88:333–338

    Article  Google Scholar 

  7. Downward J (2003) Targeting RAS signaling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  8. Bagheri-Yarmand R, Vadlamudi RK, Wang RA, Mendelsohn J, Kumar R (2000) Vascular endothelial growth factor up-regulation via p21-activated kinase-1 signaling regulates heregulin- h1-mediated angiogenesis. J Biol Chem 275:39451–39457

    Article  CAS  PubMed  Google Scholar 

  9. Carter JH, Douglass LE, Deddens JA, Colligan BM, Bhatt TR, Pemberton JO, Konicek S, Hom J, Marshall M, Graff JR (2004) Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res 10:3448–3456

    Article  CAS  PubMed  Google Scholar 

  10. Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Can 6:459–471

    Article  CAS  Google Scholar 

  11. Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781

    Article  CAS  PubMed  Google Scholar 

  12. Molli PR, Li DQ, Murray BW, Rayala SK, Kumar R (2009) PAK signaling in oncogenesis. Oncogene 28:2545–2555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Higuchi M, Onishi K, Kikuchii C, Gotoh Y (2008) Scaffolding function of PAK in the PDK1–Akt pathway. Nat Cell Biol 10:1356–1364

    Article  CAS  PubMed  Google Scholar 

  14. Mao K, Kobayashi S, Jaffer ZM, Huang Y, Volden P, Chernoff J, Liang Q (2008) Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. J Mol Cell Cardiol 44:429–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ding Q, Xia W, Liu JC, Yang JY, Lee DF, Xia J, Bartholomeusz G, Li Y, Pan Y, Li Z, Barquo RC, Kin J, Lai CC, Tsai FJ, Tsai CH, Hung MC (2005) Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 19:159–170

    Article  CAS  PubMed  Google Scholar 

  16. De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N (2012) The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets 16:S17–S27

    Article  PubMed  Google Scholar 

  17. Gopal U, Venkatraman J, Devaraj N, Devaraj H (2011) Nuclear translocation of b-catenin correlates with CD44 upregulation in Helicobacter pylori-infected gastric carcinoma. Mol Cell Biochem 357:283–293

    Article  Google Scholar 

  18. Gonzalez FJ (2006) Role of β-catenin in the adult liver. Hepatology 43:650–653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lau WY, Lai EC (2008) Hepatocellular carcinoma: current management and recent advances. Hepato Pancreat Dis Int 7:237–257

    Google Scholar 

  20. Chahar MK, Sharma N, Dobhal MP, Joshi YC (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5:1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ong KC, Khoo HE (1997) Biological effects of myricetin. Gen Pharmacol 29:121–126

    Article  CAS  PubMed  Google Scholar 

  22. Shih YW, Wu PF, Lee YC, Shi MD, Chiang TA (2009) Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: possible mediation by blocking the ERK signaling pathway. J Agric Food Chem 57:3490–3499

    Article  CAS  PubMed  Google Scholar 

  23. Cheng L, Sung CL, Jin K, Jun SC (2011) Effects of myricetin, an anticancer compound, on the bioavailability and pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. Eur J Drug Metab Pharmacokinet 36:175–182

    Article  Google Scholar 

  24. Hai W, Kim C, Song S, Kang C (2001) Study on mechanism of multistep hepatotumorigenesis in rat: development of hepatotumorigenesis. J Vet Sci 2:53–58

    Google Scholar 

  25. Khan SM, Devaraj H, Devaraj SN (2011) Chrysin abrogates early hepatocarcinogenesis and induces apoptosis in N-nitrosodiethylamine induced preneoplastic nodules in rats. Toxicol Appl Pharmacol 251:85–94

    Article  CAS  PubMed  Google Scholar 

  26. Khan SM, Devaraj H, Devaraj SN (2011) Methylated chrysin, a dimethoxy flavone, partially suppresses the development of liver preneoplastic lesions induced by N-Nitrosodiethylamine in rats. Food Chem Toxicol 49:173–178

    Article  CAS  PubMed  Google Scholar 

  27. King J (1965) The dehydrogenases or oxidoreductase-lactate dehydrogenase. In: Van D (ed) Practical clinical enzymology. Nostrand Company Ltd., London, pp 83–93

    Google Scholar 

  28. King J (1965) The hydrolases-acid and alkaline phosphatases. In: Van D (ed) Practical clinical enzymology. Nostrand Company Ltd., London, pp 191–208

    Google Scholar 

  29. King J (1965) The transferases—alanine and aspartate transaminases. In: Van D (ed) Practical clinical enzymology. Nostrand Company Ltd., London, pp 121–128

    Google Scholar 

  30. Rosali SB, Rau D (1972) Serum gamma-glutamyl transpeptidase activity in alcoholism. Clin Chim Acta 39:41–47

    Article  Google Scholar 

  31. Bergmeyer HU, Bernt E (1974) Aminotransferases and related enzymes. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 2nd edn. Academic Press, New York, pp 735–763

    Chapter  Google Scholar 

  32. Sell S, Beckar FF (1978) Alpha feto protein. Natl Cancer Inst 60:19–26

    CAS  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  34. Sivaramakrishnan V, Shilpa PNM, Kumar VRP, Devaraj SN (2008) Attenuation of N- nitrosodiethylamine-induced hepatocellular carcinogenesis by a novel flavonol—Morin. Chem Biol Interact 171:79–88

    Article  CAS  PubMed  Google Scholar 

  35. Sun F, Zheng XY, Ye J, Wu TT, Wang J, Chen W (2012) Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer 64:599–606

    Article  CAS  PubMed  Google Scholar 

  36. Zhang S, Wang L, Liu H, Zhao G, Ming L (2014) Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells. Diagn Pathol 9:68

    Article  PubMed Central  PubMed  Google Scholar 

  37. Shields JM, Pruitt K, McFall A, Shaub A, Der CJ (2000) Understanding Ras: ‘it ain’t over ‘til it’s over’. Trends Cell Biol 10:147–154

    Article  CAS  PubMed  Google Scholar 

  38. Feig LA, Buchsbaum RJ (2002) Cell signaling: life or death decision of ras proteins. Curr Biol 12:R259–R261

    Article  CAS  PubMed  Google Scholar 

  39. Huynh N, Kevin HL, Baldwin GS, Hong H (2010) P21-activated kinase 1 stimulates colon cancer cell growth and migration/invasion via ERK- and AKT-dependent pathways. Biochim Biophys Acta 1803:1106–1113

    Article  CAS  PubMed  Google Scholar 

  40. Balmanno K, Chell SD, Gillings AS, Hayat S, Cook SJ (2009) Intrinsic resistance to the MEK1/2 inhibitorAZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and/or strong PI3K signalling in colorectal cancer cell lines. Int J Cancer 125:2332–2341

    Article  CAS  PubMed  Google Scholar 

  41. Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, Yao YM, Sellers WR, Lengauer C, Stegmeier F (2009) PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res 69:4286–4293

    Article  CAS  PubMed  Google Scholar 

  42. Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S (2005) Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 280:41342–41351

    Article  CAS  PubMed  Google Scholar 

  43. Mishra R (2010) Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer 9:144

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Department of Biotechnology (Project No. BT/PR1440/AAQ/03/532/2010) for financial assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devaraj Halagowder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 4668 kb)

Supplementary material 2 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, S.C., Gopal, A. & Halagowder, D. Myricetin induces apoptosis by inhibiting P21 activated kinase 1 (PAK1) signaling cascade in hepatocellular carcinoma. Mol Cell Biochem 407, 223–237 (2015). https://doi.org/10.1007/s11010-015-2471-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2471-6

Keywords

Navigation