Skip to main content
Log in

ATF6 pathway of unfolded protein response mediates advanced oxidation protein product-induced hypertrophy and epithelial-to-mesenchymal transition in HK-2 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Advanced oxidation protein products (AOPPs) accelerate the progression of chronic kidney disease. We previously demonstrated that AOPPs induce hypertrophy and epithelial-to-mesenchymal transition (EMT) in human proximal tubular cells (HK-2 cells) through induction of endoplasmic reticulum (ER) stress. However, which pathway of unfolded protein response (UPR) induced by ER stress plays crucial roles in this process remains unclear. In this study, we investigated the roles of the protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways of UPR in this process in HK-2 cells. AOPP treatment induced the overexpression of cleaved ATF6 and spliced form of X-box binding protein-1, and induced the phosphorylation of PERK, eukaryotic translation initiation factor 2α and IRE1. Furthermore, silencing of ATF6 increased E-cadherin and zonula occludens-1 expression, lowered the expression of vimentin, and downregulated total protein content, whereas knockdown of PERK or IRE1 resulted in no difference compared with the scramble siRNA-transfected cells. AOPP-induced phosphorylation of Src, which was reproduced by thapsigargin, an inducer of ER stress, was partly reversed by salubrinal, an inhibitor of ER stress. Furthermore, the Src inhibitor saracatinib effectively blocked AOPP-induced phosphorylation of Src, activation of ER stress, hypertrophy, and EMT in HK-2 cells. Collectively, our results indicate that AOPPs induce the PERK, ATF6, and IRE1 pathways of UPR, and the ATF6 pathway rather than the other two pathways mediates AOPP-induced HK-2-cell hypertrophy and EMT. We also suggest that the ER stress involved in this process is likely mediated by the activation of Src kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382:260–272. doi:10.1016/s0140-6736(13)60687-x

    Article  PubMed  Google Scholar 

  2. Bielesz B, Sirin Y, Si H, Niranjan T, Gruenwald A, Ahn S, Kato H, Pullman J, Gessler M, Haase VH, Susztak K (2010) Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 120:4040–4054. doi:10.1172/jci43025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053. doi:10.1038/nm.3218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kriz W, Kaissling B, Le Hir M (2011) Epithelial–mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest 121:468–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kalluri R, Neilson EG (2003) Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784. doi:10.1172/jci20530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y (2010) New insights into epithelial–mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 21:212–222. doi:10.1681/asn.2008121226

    Article  CAS  PubMed  Google Scholar 

  8. Carew RM, Wang B, Kantharidis P (2012) The role of EMT in renal fibrosis. Cell Tissue Res 347:103–116. doi:10.1007/s00441-011-1227-1

    Article  CAS  PubMed  Google Scholar 

  9. Inoue T, Umezawa A, Takenaka T, Suzuki H, Okada H (2014) The contribution of epithelial–mesenchymal transition to renal fibrosis differs among kidney disease models. Kidney Int. doi:10.1038/ki.2014.235

    Google Scholar 

  10. Wolf G, Jablonski K, Schroeder R, Reinking R, Shankland SJ, Stahl RA (2003) Angiotensin II-induced hypertrophy of proximal tubular cells requires p27Kip1. Kidney Int 64:71–81. doi:10.1046/j.1523-1755.2003.00076.x

    Article  CAS  PubMed  Google Scholar 

  11. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313

    Article  CAS  PubMed  Google Scholar 

  12. Witko-Sarsat V, Friedlander M, Nguyen Khoa T, Capeillere-Blandin C, Nguyen AT, Canteloup S, Dayer JM, Jungers P, Drueke T, Descamps-Latscha B (1998) Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol 161:2524–2532

    CAS  PubMed  Google Scholar 

  13. Liu B, Hou X, Zhou Q, Tian J, Zhu P, Xu J, Hou F, Fu N (2011) Detection of advanced oxidation protein products in patients with chronic kidney disease by a novel monoclonal antibody. Free Radic Res 45:662–671. doi:10.3109/10715762.2011.564167

    Article  CAS  PubMed  Google Scholar 

  14. Li HY, Hou FF, Zhang X, Chen PY, Liu SX, Feng JX, Liu ZQ, Shan YX, Wang GB, Zhou ZM, Tian JW, Xie D (2007) Advanced oxidation protein products accelerate renal fibrosis in a remnant kidney model. J Am Soc Nephrol 18:528–538. doi:10.1681/asn.2006070781

    Article  CAS  PubMed  Google Scholar 

  15. Wei XF, Zhou QG, Hou FF, Liu BY, Liang M (2009) Advanced oxidation protein products induce mesangial cell perturbation through PKC-dependent activation of NADPH oxidase. Am J Physiol Renal Physiol 296:F427–F437. doi:10.1152/ajprenal.90536.2008

    Article  CAS  PubMed  Google Scholar 

  16. Zhou LL, Hou FF, Wang GB, Yang F, Xie D, Wang YP, Tian JW (2009) Accumulation of advanced oxidation protein products induces podocyte apoptosis and deletion through NADPH-dependent mechanisms. Kidney Int 76:1148–1160. doi:10.1038/ki.2009.322

    Article  PubMed  Google Scholar 

  17. Iwao Y, Nakajou K, Nagai R, Kitamura K, Anraku M, Maruyama T, Otagiri M (2008) CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am J Physiol Renal Physiol 295:F1871–F1880. doi:10.1152/ajprenal.00013.2008

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Qiu M, Ma Y, Bu Y, Yang L, Tang X (2014) Advanced oxidation protein products induce epithelial-to-mesenchymal transition in cultured human proximal tubular epithelial cells via oxidative stress. Nan Fang Yi Ke Da Xue Xue Bao 34:659–663

    CAS  PubMed  Google Scholar 

  19. Tang X, Rong G, Bu Y, Zhang S, Zhang M, Zhang J, Liang X (2015) Advanced oxidation protein products induce hypertrophy and epithelial-to-mesenchymal transition in human proximal tubular cells through induction of endoplasmic reticulum stress. Cell Physiol Biochem 35:816–828. doi:10.1159/000369740

    Article  PubMed  Google Scholar 

  20. Kitamura M (2008) Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: janus faces. Am J Physiol Renal Physiol 295:F323–F334. doi:10.1152/ajprenal.00050.2008

    Article  CAS  PubMed  Google Scholar 

  21. Kimura K, Jin H, Ogawa M, Aoe T (2008) Dysfunction of the ER chaperone BiP accelerates the renal tubular injury. Biochem Biophys Res Commun 366:1048–1053. doi:10.1016/j.bbrc.2007.12.098

    Article  CAS  PubMed  Google Scholar 

  22. Dickhout JG, Krepinsky JC (2009) Endoplasmic reticulum stress and renal disease. Antioxid Redox Signal 11:2341–2352. doi:10.1089/ars.2009.2705

    Article  CAS  PubMed  Google Scholar 

  23. Cybulsky AV (2010) Endoplasmic reticulum stress in proteinuric kidney disease. Kidney Int 77:187–193. doi:10.1038/ki.2009.389

    Article  CAS  PubMed  Google Scholar 

  24. Inagi R (2010) Endoplasmic reticulum stress as a progression factor for kidney injury. Curr Opin Pharmacol 10:156–165. doi:10.1016/j.coph.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  25. Ohse T, Inagi R, Tanaka T, Ota T, Miyata T, Kojima I, Ingelfinger JR, Ogawa S, Fujita T, Nangaku M (2006) Albumin induces endoplasmic reticulum stress and apoptosis in renal proximal tubular cells. Kidney Int 70:1447–1455. doi:10.1038/sj.ki.5001704

    Article  CAS  PubMed  Google Scholar 

  26. Pallet N, Bouvier N, Bendjallabah A, Rabant M, Flinois JP, Hertig A, Legendre C, Beaune P, Thervet E, Anglicheau D (2008) Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am J Transplant 8:2283–2296. doi:10.1111/j.1600-6143.2008.02396.x

    Article  CAS  PubMed  Google Scholar 

  27. Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23:7906–7909. doi:10.1038/sj.onc.1208160

    Article  CAS  PubMed  Google Scholar 

  28. Tanjore H, Cheng DS, Degryse AL, Zoz DF, Abdolrasulnia R, Lawson WE, Blackwell TS (2011) Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J Biol Chem 286:30972–30980. doi:10.1074/jbc.M110.181164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ulianich L, Garbi C, Treglia AS, Punzi D, Miele C, Raciti GA, Beguinot F, Consiglio E, Di Jeso B (2008) ER stress is associated with dedifferentiation and an epithelial-to-mesenchymal transition-like phenotype in PC Cl3 thyroid cells. J Cell Sci 121:477–486. doi:10.1242/jcs.017202

    Article  CAS  PubMed  Google Scholar 

  30. Moon SY, Kim HS, Nho KW, Jang YJ, Lee SK (2014) Endoplasmic reticulum stress induces epithelial–mesenchymal transition through autophagy via activation of c-Src kinase. Nephron Exp Nephrol 126:127–140. doi:10.1159/000362457

    Article  CAS  PubMed  Google Scholar 

  31. Huang JS, Chuang CT, Liu MH, Lin SH, Guh JY, Chuang LY (2014) Klotho attenuates high glucose-induced fibronectin and cell hypertrophy via the ERK1/2-p38 kinase signaling pathway in renal interstitial fibroblasts. Mol Cell Endocrinol 390:45–53. doi:10.1016/j.mce.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  32. Lan HY (2003) Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Curr Opin Nephrol Hypertens 12:25–29. doi:10.1097/01.mnh.0000049812.98789.97

    Article  CAS  PubMed  Google Scholar 

  33. Okada H, Inoue T, Suzuki H, Strutz F, Neilson EG (2000) Epithelial–mesenchymal transformation of renal tubular epithelial cells in vitro and in vivo. Nephrol Dial Transplant 15(Suppl 6):44–46

    Article  PubMed  Google Scholar 

  34. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97. doi:10.2353/ajpath.2010.090517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA (2006) Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J 25:5603–5613. doi:10.1038/sj.emboj.7601421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kim MK, Maeng YI, Sung WJ, Oh HK, Park JB, Yoon GS, Cho CH, Park KK (2013) The differential expression of TGF-beta1, ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis: an immunohistochemical study. Int J Clin Exp Pathol 6:1747–1758

    PubMed Central  PubMed  Google Scholar 

  37. Li Y, Sun Y, Liu F, Sun L, Li J, Duan S, Liu H, Peng Y, Xiao L, Liu Y, Xi Y, You Y, Li H, Wang M, Wang S, Hou T (2013) Norcantharidin inhibits renal interstitial fibrosis by blocking the tubular epithelial–mesenchymal transition. PLoS ONE 8:e66356. doi:10.1371/journal.pone.0066356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949. doi:10.1126/science.1146361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tay KH, Luan Q, Croft A, Jiang CC, Jin L, Zhang XD, Tseng HY (2014) Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cell Signal 26:287–294. doi:10.1016/j.cellsig.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  40. Lee JY, Chang JW, Yang WS, Kim SB, Park SK, Park JS, Lee SK (2011) Albumin-induced epithelial–mesenchymal transition and ER stress are regulated through a common ROS-c-Src kinase-mTOR pathway: effect of imatinib mesylate. Am J Physiol Renal Physiol 300:F1214–F1222. doi:10.1152/ajprenal.00710.2010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Guangdong Province (Grant Nos. 10151051501000030, S2011010004053, S2011040003566), the Science and Technical Plan of Guangzhou, Guangdong, China (Grant No. 11C22120703), the Science and Technical Plan of Guangdong, China (Grant No. 2013B021800149), and the National Natural Science Foundation of China (Grant No. 81202842).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Additional information

Xun Tang and Xiujie Liang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Liang, X., Li, M. et al. ATF6 pathway of unfolded protein response mediates advanced oxidation protein product-induced hypertrophy and epithelial-to-mesenchymal transition in HK-2 cells. Mol Cell Biochem 407, 197–207 (2015). https://doi.org/10.1007/s11010-015-2469-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2469-0

Keywords

Navigation