Skip to main content
Log in

Fluorofenidone protects against renal fibrosis by inhibiting STAT3 tyrosine phosphorylation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Signaling through the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, especially JAK2/STAT3, is involved in renal fibrosis. Fluorofenidone (FD), a novel pyridone agent, exerts anti-fibrotic effects in vitro and in vivo. Herein, we sought to investigate whether FD demonstrates its inhibitory function through preventing JAK2/STAT3 pathway. In this study, we examined the effect of FD on activation of rat renal interstitial fibroblasts, glomerular mesangial cells (GMC), and expression of JAK2/STAT3. Moreover, we explored the histological protection effects of FD in UUO rats, db/db mice, and phosphorylation of JAK2/STAT3 cascade. Our studies found that pretreatment with FD resulted in blockade of activation of fibroblast and GMC manifested by fibronectin (FN) and α-smooth muscle actin (α-SMA) protein expression and decline of STAT3 tyrosine phosphorylation induced by IL-6 or high glucose. In unilateral ureteral obstruction rats and a murine model of spontaneous type 2 diabetes (db/db mice), treatment with FD blocked the expression of FN and α-SMA, prevented renal fibrosis progression, and attenuated STAT3 activation. However, FD administration did not interfere with JAK2 activation both in vivo and in vitro. In summary, the molecular mechanism by which FD exhibits renoprotective effects appears to involve the inhibition of STAT3 phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zeisberg M, Neilson EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 21(11):1819–1834

    Article  CAS  PubMed  Google Scholar 

  2. Harris RC, Neilson EG (2006) Toward a unified theory of renal progression. Annu Rev Med 57:365–380

    Article  CAS  PubMed  Google Scholar 

  3. Leroy V, De Seigneux S, Agassiz V, Hasler U, Rafestin-Oblin ME, Vinciguerra M, Martin PY, Feraille E (2009) Aldosterone activates NF-kappaB in the collecting duct. J Am Soc Nephrol 20(1):131–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Tu X, Chen X, Xie Y, Shi S, Wang J, Chen Y, Li J (2008) Anti-inflammatory renoprotective effect of clopidogrel and irbesartan in chronic renal injury. J Am Soc Nephrol 19(1):77–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Remuzzi G, Cattaneo D, Perico N (2008) The aggravating mechanisms of aldosterone on kidney fibrosis. J Am Soc Nephrol 19(8):1459–1462

    Article  CAS  PubMed  Google Scholar 

  6. Meng J, Zou Y, Hu C, Zhu Y, Peng Z, Hu G, Wang Z, Tao L (2012) Fluorofenidone attenuates bleomycin-induced pulmonary inflammation and fibrosis in mice via restoring caveolin 1 expression and inhibiting mitogen-activated protein kinase signaling pathway. Shock 38(5):567–573

    Article  CAS  PubMed  Google Scholar 

  7. Wang LH, Liu JS, Ning WB et al (2011) Fluorofenidone attenuates diabetic nephropathy and kidney fibrosis in db/db mice. Pharmacology 88(1–2):88–99

    Article  CAS  PubMed  Google Scholar 

  8. Li BX, Tang YT, Wang W et al (2011) Fluorofenidone attenuates renal interstitial fibrosis in the rat model of obstructive nephropathy. Mol Cell Biochem 354(1–2):263–273

    Article  CAS  PubMed  Google Scholar 

  9. Yuan Q, Wang R, Peng Y et al (2011) Fluorofenidone attenuates tubulointerstitial fibrosis by inhibiting TGF-beta(1)-induced fibroblast activation. Am J Nephrol 34(2):181–194

    Article  CAS  PubMed  Google Scholar 

  10. Peng Y, Yang H, Wang N et al (2014) Fluorofenidone attenuates hepatic fibrosis by suppressing the proliferation and activation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 306(3):G253–G263

    Article  CAS  PubMed  Google Scholar 

  11. Peng Y, Yang H, Zhu T et al (2013) The antihepatic fibrotic effects of fluorofenidone via MAPK signalling pathways. Eur J Clin Invest 43(4):358–368

    Article  CAS  PubMed  Google Scholar 

  12. Peng ZZ, Hu GY, Shen H et al (2009) Fluorofenidone attenuates collagen I and transforming growth factor-beta1 expression through a nicotinamide adenine dinucleotide phosphate oxidase-dependent way in NRK-52E cells. Nephrology (Carlton) 14(6):565–572

    Article  CAS  Google Scholar 

  13. Huang L, Zhang F, Tang Y et al (2014) Fluorofenidone attenuates inflammation by inhibiting the NF-small ka, CyrillicB pathway. Am J Med Sci 348(1):75–80

    Article  PubMed  Google Scholar 

  14. Tang Y, Li B, Wang N et al (2010) Fluorofenidone protects mice from lethal endotoxemia through the inhibition of TNF-alpha and IL-1beta release. Int Immunopharmacol 10(5):580–583

    Article  CAS  PubMed  Google Scholar 

  15. Ning WB, Hu GY, Peng ZZ, Wang L, Wang W, Chen JY, Zheng X, Li J, Tao LJ (2011) Fluorofenidone inhibits Ang II-induced apoptosis of renal tubular cells through blockage of the Fas/FasL pathway. Int Immunopharmacol 11(9):1327–1332

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Hu GY, Shen H, Peng ZZ, Ning WB, Tao LJ (2009) Fluorofenidone inhibits TGF-beta1 induced CTGF via MAPK pathways in mouse mesangial cells. Pharmazie 64(10):680–684

    CAS  PubMed  Google Scholar 

  17. Yuan Q, Wang L, Zhang F et al (2011) Fluorofenidone suppresses epithelial-mesenchymal transition and the expression of connective tissue growth factor via inhibiting TGF-beta/Smads signaling in human proximal tubular epithelial cells. Pharmazie 66(12):961–967

    CAS  PubMed  Google Scholar 

  18. Chen CL, Loy A, Cen L et al (2007) Signal transducer and activator of transcription 3 is involved in cell growth and survival of human rhabdomyosarcoma and osteosarcoma cells. BMC Cancer 7:111

    Article  PubMed Central  PubMed  Google Scholar 

  19. Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19(56):6613–6626

    Article  CAS  PubMed  Google Scholar 

  20. Stepkowski SM, Chen W, Ross JA, Nagy ZS, Kirken RA (2008) STAT3: an important regulator of multiple cytokine functions. Transplantation 85(10):1372–1377

    Article  CAS  PubMed  Google Scholar 

  21. Yamamoto T, Matsuda T, Muraguchi A, Miyazono K, Kawabata M (2001) Cross-talk between IL-6 and TGF-beta signaling in hepatoma cells. FEBS Lett 492(3):247–253

    Article  CAS  PubMed  Google Scholar 

  22. Liu XT, Wang ZX, Yang Y, Wang L, Sun RF, Zhao YM, Yu NJ (2014) Active components with inhibitory activities on IFN-gamma/STAT1 and IL-6/STAT3 signaling pathways from Caulis Trachelospermi. Molecules 19(8):11560–11571

    Article  PubMed  Google Scholar 

  23. Guschin D, Rogers N, Briscoe J et al (1995) A major role for the protein tyrosine kinase JAK1 in the JAK/STAT signal transduction pathway in response to interleukin-6. EMBO J 14(7):1421–1429

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Lim CP, Phan TT, Lim IJ, Cao X (2009) Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts. J Invest Dermatol 129(4):851–861

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe S, Mu W, Kahn A, Jing N, Li JH, Lan HY, Nakagawa T, Ohashi R, Johnson RJ (2004) Role of JAK/STAT pathway in IL-6-induced activation of vascular smooth muscle cells. Am J Nephrol 24(4):387–392

    Article  CAS  PubMed  Google Scholar 

  26. Nightingale J, Patel S, Suzuki N et al (2004) Oncostatin M, a cytokine released by activated mononuclear cells, induces epithelial cell-myofibroblast transdifferentiation via Jak/Stat pathway activation. J Am Soc Nephrol 15(1):21–32

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Shaw S, Amiri F, Eaton DC, Marrero MB (2002) Inhibition of the Jak/STAT signaling pathway prevents the high glucose-induced increase in tgf-beta and fibronectin synthesis in mesangial cells. Diabetes 51(12):3505–3509

    Article  CAS  PubMed  Google Scholar 

  28. Amiri F, Shaw S, Wang X, Tang J, Waller JL, Eaton DC, Marrero MB (2002) Angiotensin II activation of the JAK/STAT pathway in mesangial cells is altered by high glucose. Kidney Int 61(5):1605–1616

    Article  CAS  PubMed  Google Scholar 

  29. Ogata H, Chinen T, Yoshida T, Kinjyo I, Takaesu G, Shiraishi H, Iida M, Kobayashi T, Yoshimura A (2006) Loss of SOCS3 in the liver promotes fibrosis by enhancing STAT3-mediated TGF-beta1 production. Oncogene 25(17):2520–2530

    Article  CAS  PubMed  Google Scholar 

  30. Samavati L, Rastogi R, Du W, Huttemann M, Fite A, Franchi L (2009) STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 46(8–9):1867–1877

    Article  CAS  PubMed  Google Scholar 

  31. Kuratsune M, Masaki T, Hirai T, Kiribayashi K, Yokoyama Y, Arakawa T, Yorioka N, Kohno N (2007) Signal transducer and activator of transcription 3 involvement in the development of renal interstitial fibrosis after unilateral ureteral obstruction. Nephrology (Carlton) 12(6):565–571

    Article  CAS  Google Scholar 

  32. Pang M, Ma L, Gong R et al (2010) A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy. Kidney Int 78(3):257–268

    Article  CAS  PubMed  Google Scholar 

  33. Berthier CC, Zhang H, Schin M et al (2009) Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58(2):469–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lu TC, Wang ZH, Feng X et al (2009) Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy. Kidney Int 76(1):63–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ, Morishita R, Johnson RJ (2003) Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 14(6):1535–1548

    Article  CAS  PubMed  Google Scholar 

  36. Lin SL, Chen RH, Chen YM, Chiang WC, Lai CF, Wu KD, Tsai TJ (2005) Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J Am Soc Nephrol 16(9):2702–2713

    Article  CAS  PubMed  Google Scholar 

  37. Radford MJ, Donadio JJ, Bergstralh EJ, Grande JP (1997) Predicting renal outcome in IgA nephropathy. J Am Soc Nephrol 8(2):199–207

    PubMed  Google Scholar 

  38. Striker LJ, Doi T, Elliot S, Striker GE (1989) The contribution of glomerular mesangial cells to progressive glomerulosclerosis. Semin Nephrol 9(4):318–328

    CAS  PubMed  Google Scholar 

  39. Nechemia-Arbely Y, Barkan D, Pizov G, Shriki A, Rose-John S, Galun E, Axelrod JH (2008) IL-6/IL-6R axis plays a critical role in acute kidney injury. J Am Soc Nephrol 19(6):1106–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Peters M, Muller AM, Rose-John S (1998) Interleukin-6 and soluble interleukin-6 receptor: direct stimulation of gp130 and hematopoiesis. Blood 92(10):3495–3504

    CAS  PubMed  Google Scholar 

  41. Koike K, Ueda S, Yamagishi S, Yasukawa H, Kaida Y, Yokoro M, Fukami K, Yoshimura A, Okuda S (2014) Protective role of JAK/STAT signaling against renal fibrosis in mice with unilateral ureteral obstruction. Clin Immunol 150(1):78–87

    Article  CAS  PubMed  Google Scholar 

  42. Herrmann JE, Imura T, Song B et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28(28):7231–7243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ortiz-Munoz G, Lopez-Parra V, Lopez-Franco O et al (2010) Suppressors of cytokine signaling abrogate diabetic nephropathy. J Am Soc Nephrol 21(5):763–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC (1984) Structural–functional relationships in diabetic nephropathy. J Clin Invest 74(4):1143–1155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Fioretto P, Mauer M (2007) Histopathology of diabetic nephropathy. Semin Nephrol 27(2):195–207

    Article  PubMed Central  PubMed  Google Scholar 

  46. Bader R, Bader H, Grund KE, Mackensen-Haen S, Christ H, Bohle A (1980) Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol Res Pract 167(2–4):204–216

    Article  CAS  PubMed  Google Scholar 

  47. Banes-Berceli AK, Shaw S, Ma G, Brands M, Eaton DC, Stern DM, Fulton D, Caldwell RW, Marrero MB (2006) Effect of simvastatin on high glucose- and angiotensin II-induced activation of the JAK/STAT pathway in mesangial cells. Am J Physiol Renal Physiol 291(1):F116–F121

    Article  CAS  PubMed  Google Scholar 

  48. Ha H, Lee HB (2000) Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int Suppl 77:S19–S25

    Article  CAS  PubMed  Google Scholar 

  49. Haneda M, Kikkawa R, Sugimoto T, Koya D, Araki S, Togawa M, Shigeta Y (1995) Abnormalities in protein kinase C and MAP kinase cascade in mesangial cells cultured under high glucose conditions. J Diabetes Complicat 9(4):246–248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Doctoral Foundation of the Ministry of Education of China (Grant No. 20120162130001), by the National Natural Science Foundation of China (Grant No. 81273575) to Dr Li-Jian Tao, and by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 81300610) to Dr Qiong-jing Yuan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-jian Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Liu, Cy., Lu, Mm. et al. Fluorofenidone protects against renal fibrosis by inhibiting STAT3 tyrosine phosphorylation. Mol Cell Biochem 407, 77–87 (2015). https://doi.org/10.1007/s11010-015-2456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2456-5

Keywords

Navigation