Skip to main content
Log in

Functional variant in methionine synthase reductase intron-1 is associated with pleiotropic congenital malformations

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Congenital malformations, such as neural tube defects (NTDs) and congenital heart disease (CHD), cause significant fetal mortality and childhood morbidity. NTDs are a common congenital anomaly, and are typically induced by higher maternal homocysteine (Hcy) levels and abnormal folate metabolism. The gene encoding methionine synthase reductase (MTRR) is essential for adequate remethylation of Hcy. Previous studies have focused on the coding region of genes involved in one-carbon metabolism, but recent research demonstrates that an allelic change in a non-coding region of MTRR (rs326119) increases the risk of CHD. We hypothesized that this variant might contribute to the etiology of NTDs as well, based on a common role during early embryogenesis. In the present study, 244 neural tube defect cases and 407 controls from northern China were analyzed to determine any association (by χ 2 test) between rs326119 and disease phenotypes. Significant increased risk of anencephaly was seen in MTRR variant rs326119 heterozygote (het) and homozygote (hom) individuals [odds ratios (OR)het = 1.81; ORhom = 2.05)]. Furthermore, this variant was also a risk factor for congenital malformations of the adrenal gland (OR = 1.85), likely due to multiple systemic malformations in the NTDs case population. Our present data indicate that the rs326119 non-coding variant of MTRR has a pleiotropic effect on the development of multiple tissues, especially during early stages in utero. This suggests the allelic state of MTRR is a significant clinical factor affecting Hcy levels and optimal folic supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu X, Lin L, Zheng X et al (2007) High prevalence of NTDs in Shanxi Province: a combined epidemiological approach. Birth Defects Res A Clin Mol Teratol 79:702–707. doi:10.1002/bdra.20397

    Article  CAS  PubMed  Google Scholar 

  2. Czeizel AE, Dudás I, Vereczkey A, Bánhidy F (2013) Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects. Nutrients 5:4760–4775. doi:10.3390/nu5114760

    Article  PubMed Central  PubMed  Google Scholar 

  3. Nakouzi GA, Nadeau JH (2014) Does dietary folic acid supplementation in mouse NTD models affect neural tube development or gamete preference at fertilization? BMC Genet 15:91. doi:10.1186/s12863-014-0091-x

    Article  PubMed Central  PubMed  Google Scholar 

  4. Berry RJ, Li Z, Erickson JD et al (1999) Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N Engl J Med 341:1485–1490. doi:10.1056/NEJM199911113412001

    Article  CAS  PubMed  Google Scholar 

  5. Botto LD, Olney RS, Erickson JD (2004) Vitamin supplements and the risk for congenital anomalies other than neural tube defects. Am J Med Genet C Semin Med Genet 125C:12–21. doi:10.1002/ajmg.c.30004

    Article  PubMed  Google Scholar 

  6. Chandler AL, Hobbs CA, Mosley BS et al (2012) Neural tube defects and maternal intake of micronutrients related to one-carbon metabolism or antioxidant activity. Birth Defects Res A Clin Mol Teratol 94:864–874. doi:10.1002/bdra.23068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dary O (2009) Nutritional interpretation of folic acid interventions. Nutr Rev 67:235–244. doi:10.1111/j.1753-4887.2009.00193.x

    Article  PubMed  Google Scholar 

  8. Sun A, Chen H-M, Cheng S-J et al (2014) Significant association of deficiencies of hemoglobin, iron, vitamin B12, and folic acid and high homocysteine level with recurrent aphthous stomatitis. J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. doi:10.1111/jop.12241

    Google Scholar 

  9. Botto LD, Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151:862–877

    Article  CAS  PubMed  Google Scholar 

  10. Ceyhan ST, Beyan C, Atay V et al (2010) Serum vitamin B12 and homocysteine levels in pregnant women with neural tube defect. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol 26:578–581. doi:10.3109/09513591003632183

    Article  CAS  Google Scholar 

  11. Steegers-Theunissen RP, Boers GH, Trijbels FJ, Eskes TK (1991) Neural-tube defects and derangement of homocysteine metabolism. N Engl J Med 324:199–200. doi:10.1056/NEJM199101173240315

    Article  CAS  PubMed  Google Scholar 

  12. Ouyang S, Li Y, Liu Z et al (2013) Association between MTR A2756G and MTRR A66G polymorphisms and maternal risk for neural tube defects: a meta-analysis. Gene 515:308–312. doi:10.1016/j.gene.2012.11.070

    Article  CAS  PubMed  Google Scholar 

  13. Relton CL, Wilding CS, Pearce MS et al (2004) Gene-gene interaction in folate-related genes and risk of neural tube defects in a UK population. J Med Genet 41:256–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhu H, Wicker NJ, Shaw GM et al (2003) Homocysteine remethylation enzyme polymorphisms and increased risks for neural tube defects. Mol Genet Metab 78:216–221

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Q, Bai B-L, Liu X-Z et al (2014) Association of folate metabolism genes MTRR and MTHFR with complex congenital abnormalities among Chinese population in Shanxi Province, China. Zhongguo Dang Dai Er Ke Za Zhi Chin J Contemp Pediatr 16:840–845

    CAS  Google Scholar 

  16. Liu J, Zhang Y, Jin L et al (2014) Variants in maternal COMT and MTHFR genes and risk of neural tube defects in offspring. Metab Brain Dis. doi:10.1007/s11011-014-9582-8

    Google Scholar 

  17. Zhang Q, Zha D, Dong P et al (2014) Association analysis between MTHFR genetic polymorphisms and the risk of congenital heart diseases in Chinese Han population. J Pharm Pharmacol 66:1259–1264. doi:10.1111/jphp.12260

    Article  CAS  PubMed  Google Scholar 

  18. Zhao J-Y, Qiao B, Duan W-Y et al (2014) Genetic variants reducing MTR gene expression increase the risk of congenital heart disease in Han Chinese populations. Eur Heart J 35:733–742. doi:10.1093/eurheartj/eht221

    Article  PubMed  Google Scholar 

  19. Marini NJ, Hoffmann TJ, Lammer EJ et al (2011) A genetic signature of spina bifida risk from pathway-informed comprehensive gene-variant analysis. PLoS One 6:e28408. doi:10.1371/journal.pone.0028408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Deng L, Elmore CL, Lawrance AK et al (2008) Methionine synthase reductase deficiency results in adverse reproductive outcomes and congenital heart defects in mice. Mol Genet Metab 94:336–342. doi:10.1016/j.ymgme.2008.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Olteanu H, Wolthers KR, Munro AW et al (2004) Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase. Biochemistry (Mosc) 43:1988–1997. doi:10.1021/bi035910i

    Article  CAS  Google Scholar 

  22. Olteanu H, Banerjee R (2001) Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation. J Biol Chem 276:35558–35563. doi:10.1074/jbc.M103707200

    Article  CAS  PubMed  Google Scholar 

  23. Zhao J-Y, Yang X-Y, Gong X-H et al (2012) Functional variant in methionine synthase reductase intron-1 significantly increases the risk of congenital heart disease in the Han Chinese population. Circulation 125:482–490. doi:10.1161/CIRCULATIONAHA.111.050245

    Article  CAS  PubMed  Google Scholar 

  24. Chang H, Zhang T, Zhang Z et al (2011) Tissue-specific distribution of aberrant DNA methylation associated with maternal low-folate status in human neural tube defects. J Nutr Biochem 22:1172–1177. doi:10.1016/j.jnutbio.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  25. Chen X, Guo J, Lei Y et al (2010) Global DNA hypomethylation is associated with NTD-affected pregnancy: a case-control study. Birth Defects Res A Clin Mol Teratol 88:575–581. doi:10.1002/bdra.20670

    Article  CAS  PubMed  Google Scholar 

  26. Wang L, Wang F, Guan J et al (2010) Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr 91:1359–1367. doi:10.3945/ajcn.2009.28858

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H-Y, Luo G-A, Liang Q-L et al (2008) Neural tube defects and disturbed maternal folate- and homocysteine-mediated one-carbon metabolism. Exp Neurol 212:515–521. doi:10.1016/j.expneurol.2008.04.044

    Article  CAS  PubMed  Google Scholar 

  28. Dong C, Yoon W, Goldschmidt-Clermont PJ (2002) DNA methylation and atherosclerosis. J Nutr 132:2406S–2409S

    CAS  PubMed  Google Scholar 

  29. Yang X, Cheyette BNR (2013) SEC14 and spectrin domains 1 (Sestd1) and Dapper antagonist of catenin 1 (Dact1) scaffold proteins cooperatively regulate the Van Gogh-like 2 (Vangl2) four-pass transmembrane protein and planar cell polarity (PCP) pathway during embryonic development in mice. J Biol Chem 288:20111–20120. doi:10.1074/jbc.M113.465427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National “973” project (Grant number 2013CB945404) and the National Natural Science Foundation of China, Beijing, China (Grant numbers 81471163 and 81300489).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Committee of Medical Ethics at the Capital Institute of Pediatrics (Beijing, China) and with the 1964 Helsinki declaration and its later amendments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Zhang or Jun Xie.

Additional information

Haiqin Cheng and Huili Li have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Li, H., Bu, Z. et al. Functional variant in methionine synthase reductase intron-1 is associated with pleiotropic congenital malformations. Mol Cell Biochem 407, 51–56 (2015). https://doi.org/10.1007/s11010-015-2453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2453-8

Keywords

Navigation