Skip to main content
Log in

TGF-β1 and TIMP-4 regulate atrial fibrosis in atrial fibrillation secondary to rheumatic heart disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To investigate the involvement of transforming growth factor-β1 (TGF-β1) and tissue inhibitor of metalloproteinase 4 (TIMP-4) in influencing the severity of atrial fibrosis in rheumatic heart disease (RHD) patients with atrial fibrillation (AF). The degree of myocardial fibrosis was evaluated using Masson staining. The expression levels of TGF-β1, TIMP-4, matrix metalloproteinase-2 (MMP-2), type I collagen, and type III collagen were estimated by Western blot analysis. Additionally, TGF-β1 and TIMP-4 mRNA levels were quantified by qRT-PCR. The effect of TGF-β1 stimulation on TIMP-4 expression was assessed by in vitro stimulation of freshly isolated human atrial fibroblasts with recombinant human TGF-β1, followed by Western blot analysis to detect changes in TIMP-4 levels. Masson stain revealed that the left atrial diameter and collagen volume fraction were obviously increased in AF patients, compared to sinus rhythm (SR) controls (both P < 0.05). Western blot analysis showed significantly elevated levels of the AF markers MMP-2, type I collagen, and type III collagen in the AF group, in comparison to the SR controls (all P < 0.05). In the AF group, TGF-β1 expression was relatively higher, while TIMP-4 expression was apparently lower than the SR group (all P < 0.05). TIMP-4 expression level showed a negative association with TGF-β1 expression level (r = −0.98, P < 0.01) and TGF-β1 stimulation of atrial fibroblasts led to a sharp decrease in TIMP-4 protein level. Increased TGF-β1 expression and decreased TIMP-4 expression correlated with atrial fibrosis and ECM changes in the atria of RHD patients with AF. Notably, TGF-β1 suppressed TIMP-4 expression, suggesting that selective TGF-β1 inhibitors may be useful therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu X, Tan HW, Wang XH, Shi HF, Li YZ, Li F, Zhou L, Gu JN (2010) Efficacy of catheter ablation and surgical CryoMaze procedure in patients with long-lasting persistent atrial fibrillation and rheumatic heart disease: a randomized trial. Eur Heart J 31:2633–2641. doi:10.1093/eurheartj/ehq201

    Article  PubMed  Google Scholar 

  2. Mirabel M, Celermajer DS, Ferreira B, Tafflet M, Perier MC, Karam N, Mocumbi AO, Jani DN, Sidi D, Jouven X, Marijon E (2012) Screening for rheumatic heart disease: evaluation of a simplified echocardiography-based approach. Eur Heart J Cardiovasc Imaging 13:1024–1029. doi:10.1093/ehjci/jes077

    Article  PubMed  Google Scholar 

  3. European Heart Rhythm A, European Association for Cardio-Thoracic S, Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S, Van Gelder IC, Al-Attar N, Hindricks G, Prendergast B, Heidbuchel H, Alfieri O, Angelini A, Atar D, Colonna P, De Caterina R, De Sutter J, Goette A, Gorenek B, Heldal M, Hohloser SH, Kolh P, Le Heuzey JY, Ponikowski P, Rutten FH and Guidelines ESCCfP (2010) Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC). Europace 12:1360–1420. doi: 10.1093/europace/euq350

  4. Sharma S, Sharma G, Hote M, Devagourou V, Kesari V, Arava S, Airan B, Ray R (2014) Light and electron microscopic features of surgically excised left atrial appendage in rheumatic heart disease patients with atrial fibrillation and sinus rhythm. Cardiovasc Pathol 23:319–326. doi:10.1016/j.carpath.2014.07.008

    Article  PubMed  Google Scholar 

  5. Krogh-Madsen T, Abbott GW, Christini DJ (2012) Effects of electrical and structural remodeling on atrial fibrillation maintenance: a simulation study. PLoS Comput Biol 8:e1002390. doi:10.1371/journal.pcbi.1002390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kim SJ, Choisy SC, Barman P, Zhang H, Hancox JC, Jones SA, James AF (2011) Atrial remodeling and the substrate for atrial fibrillation in rat hearts with elevated afterload. Circ Arrhythm Electrophysiol 4:761–769. doi:10.1161/CIRCEP.111.964783

    Article  PubMed  Google Scholar 

  7. Xiao H, Lei H, Qin S, Ma K, Wang X (2010) TGF-beta1 expression and atrial myocardium fibrosis increase in atrial fibrillation secondary to rheumatic heart disease. Clin Cardiol 33:149–156. doi:10.1002/clc.20713

    Article  PubMed  Google Scholar 

  8. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51:600–606. doi:10.1016/j.yjmcc.2010.10.033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Moore L, Fan D, Basu R, Kandalam V, Kassiri Z (2012) Tissue inhibitor of metalloproteinases (TIMPs) in heart failure. Heart Fail Rev 17:693–706. doi:10.1007/s10741-011-9266-y

    Article  CAS  PubMed  Google Scholar 

  10. Verheule S, Sato T, Tt Everett, Engle SK, Otten D, Rubart-von der Lohe M, Nakajima HO, Nakajima H, Field LJ, Olgin JE (2004) Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ Res 94:1458–1465. doi:10.1161/01.RES.0000129579.59664.9d

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Rahmutula D, Marcus GM, Wilson EE, Ding CH, Xiao Y, Paquet AC, Barbeau R, Barczak AJ, Erle DJ, Olgin JE (2013) Molecular basis of selective atrial fibrosis due to overexpression of transforming growth factor-beta1. Cardiovasc Res 99:769–779. doi:10.1093/cvr/cvt074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gramley F, Lorenzen J, Koellensperger E, Kettering K, Weiss C, Munzel T (2010) Atrial fibrosis and atrial fibrillation: the role of the TGF-beta1 signaling pathway. Int J Cardiol 143:405–413. doi:10.1016/j.ijcard.2009.03.110

    Article  PubMed  Google Scholar 

  13. Kim SK, Park JH, Kim JY, Choi JI, Joung B, Lee MH, Kim SS, Kim YH, Pak HN (2011) High plasma concentrations of transforming growth factor-beta and tissue inhibitor of metalloproteinase-1: potential non-invasive predictors for electroanatomical remodeling of atrium in patients with non-valvular atrial fibrillation. Circ J 75:557–564

    Article  PubMed  Google Scholar 

  14. Pn M (2014) World Medical Association publishes the revised declaration of Helsinki. Natl Med J India 27:56

    Google Scholar 

  15. Bennett JA, Riegel B, Bittner V, Nichols J (2002) Validity and reliability of the NYHA classes for measuring research outcomes in patients with cardiac disease. Heart Lung 31:262–270

    Article  PubMed  Google Scholar 

  16. Berry C, Zalewski A, Kovach R, Savage M, Goldberg S (1989) Surface electrocardiogram in the detection of transmural myocardial ischemia during coronary artery occlusion. Am J Cardiol 63:21–26

    Article  CAS  PubMed  Google Scholar 

  17. Cohen GI, Pietrolungo JF, Thomas JD, Klein AL (1996) A practical guide to assessment of ventricular diastolic function using Doppler echocardiography. J Am Coll Cardiol 27:1753–1760

    Article  CAS  PubMed  Google Scholar 

  18. Sternfeld J (1979) Evidence for differential cellular adhesion as the mechanism of sorting-out of various cellular slime mold species. J Embryol Exp Morphol 53:163–178

    CAS  PubMed  Google Scholar 

  19. Schleicher E, Wieland OH (1978) Evaluation of the Bradford method for protein determination in body fluids. J Clin Chem Clin Biochem 16:533–534

    CAS  PubMed  Google Scholar 

  20. Zhang J, Zhuang P, Lu Z, Zhang M, Zhang T, Zhang Y, Wang J, Liu D, Tong Y (2014) Suxiaojiuxin pill enhances atherosclerotic plaque stability by modulating the MMPs/TIMPs balance in ApoE-deficient mice. J Cardiovasc Pharmacol 64:120–126. doi:10.1097/FJC.0000000000000095

    Article  CAS  PubMed  Google Scholar 

  21. Zamilpa R, Lindsey ML (2010) Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. J Mol Cell Cardiol 48:558–563. doi:10.1016/j.yjmcc.2009.06.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hansson J, Vasan RS, Arnlov J, Ingelsson E, Lind L, Larsson A, Michaelsson K, Sundstrom J (2011) Biomarkers of extracellular matrix metabolism (MMP-9 and TIMP-1) and risk of stroke, myocardial infarction, and cause-specific mortality: cohort study. PLoS ONE 6:e16185. doi:10.1371/journal.pone.0016185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Groblewska M, Siewko M, Mroczko B, Szmitkowski M (2012) The role of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in the development of esophageal cancer. Folia Histochem Cytobiol 50:12–19. doi:10.2478/18691

    Article  PubMed  Google Scholar 

  24. Kong CH, Lin XY, Woo CC, Wong HC, Lee CN, Richards AM, Sorokin VA (2013) Characteristics of aortic wall extracellular matrix in patients with acute myocardial infarction: tissue microarray detection of collagen I, collagen III and elastin levels. Interact CardioVasc Thorac Surg 16:11–15. doi:10.1093/icvts/ivs421

    Article  PubMed Central  PubMed  Google Scholar 

  25. Givvimani S, Tyagi N, Sen U, Mishra PK, Qipshidze N, Munjal C, Vacek JC, Abe OA, Tyagi SC (2010) MMP-2/TIMP-2/TIMP-4 versus MMP-9/TIMP-3 in transition from compensatory hypertrophy and angiogenesis to decompensatory heart failure. Arch Physiol Biochem 116:63–72. doi:10.3109/13813451003652997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rizzi E, Ceron CS, Guimaraes DA, Prado CM, Rossi MA, Gerlach RF, Tanus-Santos JE (2013) Temporal changes in cardiac matrix metalloproteinase activity, oxidative stress, and TGF-beta in renovascular hypertension-induced cardiac hypertrophy. Exp Mol Pathol 94:1–9. doi:10.1016/j.yexmp.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  27. Rizzi E, Castro MM, Prado CM, Silva CA, Fazan R Jr, Rossi MA, Tanus-Santos JE, Gerlach RF (2010) Matrix metalloproteinase inhibition improves cardiac dysfunction and remodeling in 2-kidney, 1-clip hypertension. J Card Fail 16:599–608. doi:10.1016/j.cardfail.2010.02.005

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Ma C, Dong J, Liu X, Long D, Tian Y, Yu R (2008) The fibrosis and atrial fibrillation: is the transforming growth factor-beta 1 a candidate etiology of atrial fibrillation. Med Hypotheses 70:317–319. doi:10.1016/j.mehy.2007.04.046

    Article  CAS  PubMed  Google Scholar 

  29. Lorts A, Schwanekamp JA, Baudino TA, McNally EM, Molkentin JD (2012) Deletion of periostin reduces muscular dystrophy and fibrosis in mice by modulating the transforming growth factor-beta pathway. Proc Natl Acad Sci USA 109:10978–10983. doi:10.1073/pnas.1204708109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the reviewers for their helpful comments on this paper.

Competing interests

The authors have declared that no existing competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Yang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Huang, ZY., Wang, ZH. et al. TGF-β1 and TIMP-4 regulate atrial fibrosis in atrial fibrillation secondary to rheumatic heart disease. Mol Cell Biochem 406, 131–138 (2015). https://doi.org/10.1007/s11010-015-2431-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2431-1

Keywords

Navigation