Skip to main content
Log in

Inhibitory effects of peroxisome proliferator-activated receptor γ agonists on collagen IV production in podocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists have beneficial effects on the kidney diseases through preventing microalbuminuria and glomerulosclerosis. However, the mechanisms underlying these effects remain to be fully understood. In this study, we investigate the effects of PPAR-γ agonist, rosiglitazone (Rosi) and pioglitazone (Pio), on collagen IV production in mouse podocytes. The endogenous expression of PPAR-γ was found in the primary podocytes and can be upregulated by Rosi and Pio, respectively, detected by RT-PCR and Western blot. PPAR-γ agonist markedly blunted the increasing of collagen IV expression and extraction in podocytes induced by TGF-β. In contrast, adding PPAR-γ antagonist, GW9662, to podocytes largely prevented the inhibition of collagen IV expression from Pio treatment. Our data also showed that phosphorylation of Smad2/3 enhanced by TGF-β in a time-dependent manner was significantly attenuated by adding Pio. The promoter region of collagen IV gene contains one putative consensus sequence of Smad-binding element (SBE) by promoter analysis, Rosi and Pio significantly ameliorated TGF-β-induced SBE4-luciferase activity. In conclusion, PPAR-γ activation by its agonist, Rosi or Pio, in vitro directly inhibits collagen IV expression and synthesis in primary mouse podocytes. The suppression of collagen IV production was related to the inhibition of TGF-β-driven phosphorylation of Smad2/3 and decreased response activity of SBEs of collagen IV in PPAR-γ agonist-treated mouse podocytes. This represents a novel mechanistic support regarding PPAR-γ agonists as podocyte protective agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Campbell IW (2005) The clinical significance of PPAR gamma agonism. Curr Mol Med 5:349–363

    Article  CAS  PubMed  Google Scholar 

  2. Bhatia V, Viswanathan P (2006) Insulin resistance and PPAR insulin sensitizers. Curr Opin Investig Drugs 7:891–897

    CAS  PubMed  Google Scholar 

  3. Sarafidis PA, Bakris GL (2006) Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int 70:1223–1233

    Article  CAS  PubMed  Google Scholar 

  4. Mao Z, Ong AC (2009) Peroxisome proliferator-activated receptor gamma agonists in kidney disease–future promise, present fears. Nephron Clin Pract 112:c230–c241

    Article  CAS  PubMed  Google Scholar 

  5. Sarafidis PA, Stafylas PC, Georgianos PI, Saratzis AN, Lasaridis AN (2010) Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am J Kidney Dis 55:835–847

    Article  CAS  PubMed  Google Scholar 

  6. Bakris GL, Ruilope LM, McMorn SO, Weston WM, Heise MA, Freed MI, Porter LE (2006) Rosiglitazone reduces microalbuminuria and blood pressure independently of glycemia in type 2 diabetes patients with microalbuminuria. J Hypertens 24:2047–2055

    Article  CAS  PubMed  Google Scholar 

  7. Yang HC, Deleuze S, Zuo Y, Potthoff SA, Ma LJ, Fogo AB (2009) The PPARgamma agonist pioglitazone ameliorates aging-related progressive renal injury. J Am Soc Nephrol 20:2380–2388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Venegas-Pont M, Sartori-Valinotti JC, Maric C, Racusen LC, Glover PH, McLemore GR Jr, Jones AV, Reckelhoff JF, Ryan MJ (2009) Rosiglitazone decreases blood pressure and renal injury in a female mouse model of systemic lupus erythematosus. Am J Physiol Regul Integr Comp Physiol 296:R1282–R1289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yotsumoto T, Naitoh T, Kanaki T, Matsuda M, Tsuruzoe N (2003) A novel peroxisome proliferator-activated receptor (PPAR) gamma agonist, NIP-222, reduces urinary albumin excretion in streptozotocin-diabetic mice independent of PPARgamma activation. Metab, Clin Exp 52:1633–1637

    Article  CAS  Google Scholar 

  10. Kawai T, Masaki T, Doi S, Arakawa T, Yokoyama Y, Doi T, Kohno N, Yorioka N (2009) PPAR-gamma agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-beta. Lab Investig 89:47–58

    Article  CAS  PubMed  Google Scholar 

  11. Isshiki K, Haneda M, Koya D, Maeda S, Sugimoto T, Kikkawa R (2000) Thiazolidinedione compounds ameliorate glomerular dysfunction independent of their insulin-sensitizing action in diabetic rats. Diabetes 49:1022–1032

    Article  CAS  PubMed  Google Scholar 

  12. Ma LJ, Marcantoni C, Linton MF, Fazio S, Fogo AB (2001) Peroxisome proliferator-activated receptor-gamma agonist troglitazone protects against nondiabetic glomerulosclerosis in rats. Kidney Int 59:1899–1910

    Article  CAS  PubMed  Google Scholar 

  13. Guan Y, Zhang Y, Schneider A, Davis L, Breyer RM, Breyer MD (2001) Peroxisome proliferator-activated receptor-gamma activity is associated with renal microvasculature. Am J Physiol Ren Physiol 281:F1036–F1046

    Article  CAS  Google Scholar 

  14. Zheng F, Fornoni A, Elliot SJ, Guan Y, Breyer MD, Striker LJ, Striker GE (2002) Upregulation of type I collagen by TGF-beta in mesangial cells is blocked by PPARgamma activation. Am J Physiol Ren Physiol 282:F639–F648

    Article  CAS  Google Scholar 

  15. Law RE, Goetze S, Xi XP, Jackson S, Kawano Y, Demer L, Fishbein MC, Meehan WP, Hsueh WA (2000) Expression and function of PPARgamma in rat and human vascular smooth muscle cells. Circulation 101:1311–1318

    Article  CAS  PubMed  Google Scholar 

  16. Kanjanabuch T, Ma LJ, Chen J, Pozzi A, Guan Y, Mundel P, Fogo AB (2007) PPAR-gamma agonist protects podocytes from injury. Kidney Int 71:1232–1239

    Article  CAS  PubMed  Google Scholar 

  17. Shirato I, Hishiki T, Tomino Y (2001) Podocyte loss and progression of diabetic nephropathy. Contrib Nephrol 134:69–73

    PubMed  Google Scholar 

  18. Gassler N, Elger M, Kranzlin B, Kriz W, Gretz N, Hahnel B, Hosser H, Hartmann I (2001) Podocyte injury underlies the progression of focal segmental glomerulosclerosis in the fa/fa Zucker rat. Kidney Int 60:106–116

    Article  CAS  PubMed  Google Scholar 

  19. Suh JH, Miner JH (2013) The glomerular basement membrane as a barrier to albumin. Nat Rev Nephrol 9:470–477

    Article  CAS  PubMed  Google Scholar 

  20. Yurchenco PD, Smirnov S, Mathus T (2002) Analysis of basement membrane self-assembly and cellular interactions with native and recombinant glycoproteins. Methods Cell Biol 69:111–144

    CAS  PubMed  Google Scholar 

  21. Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG (2003) Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. New Engl J Med 348:2543–2556

    Article  CAS  PubMed  Google Scholar 

  22. Wu DT, Bitzer M, Ju W, Mundel P, Bottinger EP (2005) TGF-beta concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes. J Am Soc Nephrol 16:3211–3221

    Article  CAS  PubMed  Google Scholar 

  23. Mitu GM, Wang S, Hirschberg R (2007) BMP7 is a podocyte survival factor and rescues podocytes from diabetic injury. Am J Physiol Ren Physiol 293:F1641–F1648

    Article  CAS  Google Scholar 

  24. Liebau MC, Lang D, Bohm J, Endlich N, Bek MJ, Witherden I, Mathieson PW, Saleem MA, Pavenstadt H, Fischer KG (2006) Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol Ren Physiol 290:F710–F719

    Article  CAS  Google Scholar 

  25. Isermann B, Vinnikov IA, Madhusudhan T, Herzog S, Kashif M, Blautzik J, Corat MA, Zeier M, Blessing E (2007) Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 13:1349–1358

    Article  CAS  PubMed  Google Scholar 

  26. Phillips LM, Wang Y, Dai T, Feldman DL, LaPage J, Adler SG (2011) The renin inhibitor aliskiren attenuates high-glucose induced extracellular matrix synthesis and prevents apoptosis in cultured podocytes. Nephron Exp Nephrol 118:e49–e59

    Article  CAS  PubMed  Google Scholar 

  27. Yang HC, Ma LJ, Ma J, Fogo AB (2006) Peroxisome proliferator-activated receptor-gamma agonist is protective in podocyte injury-associated sclerosis. Kidney Int 69:1756–1764

    Article  CAS  PubMed  Google Scholar 

  28. Liang XB, Ma LJ, Naito T, Wang Y, Madaio M, Zent R, Pozzi A, Fogo AB (2006) Angiotensin type 1 receptor blocker restores podocyte potential to promote glomerular endothelial cell growth. J Am Soc Nephrol 17:1886–1895

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Shen Y, Ding Y, Liu Y, Su D, Liang X (2014) Hrd1 participates in the regulation of collagen I synthesis in renal fibrosis. Mol Cell Biochem 386:35–44

    Article  CAS  PubMed  Google Scholar 

  30. Lennon R, Welsh GI, Singh A, Satchell SC, Coward RJ, Tavare JM, Mathieson PW, Saleem MA (2009) Rosiglitazone enhances glucose uptake in glomerular podocytes using the glucose transporter GLUT1. Diabetologia 52:1944–1952

    Article  CAS  PubMed  Google Scholar 

  31. Miglio G, Rosa AC, Rattazzi L, Grange C, Camussi G, Fantozzi R (2012) Protective effects of peroxisome proliferator-activated receptor agonists on human podocytes: proposed mechanisms of action. Br J Pharmacol 167:641–653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Su HC, Ma CT, Yu BC, Chien YC, Tsai CC, Huang WC, Lin CF, Chuang YH, Young KC, Wang JN (2012) Glycogen synthase kinase-3beta regulates anti-inflammatory property of fluoxetine. Int Immunopharmacol 14:150–156

    Article  CAS  PubMed  Google Scholar 

  33. Liang X, Peters KW, Butterworth MB, Frizzell RA (2006) 14-3-3 isoforms are induced by aldosterone and participate in its regulation of epithelial sodium channels. J Biol Chem 281:16323–16332

    Article  CAS  PubMed  Google Scholar 

  34. Cha DR, Zhang X, Zhang Y, Wu J, Su D, Han JY, Fang X, Yu B, Breyer MD, Guan Y (2007) Peroxisome proliferator activated receptor alpha/gamma dual agonist tesaglitazar attenuates diabetic nephropathy in db/db mice. Diabetes 56:2036–2045

    Article  CAS  PubMed  Google Scholar 

  35. Moridaira K, Morrissey J, Fitzgerald M, Guo G, McCracken R, Tolley T, Klahr S (2003) ACE inhibition increases expression of the ETB receptor in kidneys of mice with unilateral obstruction. Am J Physiol Ren Physiol 284:F209–F217

    Article  CAS  Google Scholar 

  36. Tamaki K, Okuda S (2009) Role of TGF-beta in the progression of renal fibrosis. Contrib Nephrol 139:44–65

    Google Scholar 

  37. Schnaper HW, Jandeska S, Runyan CE, Hubchak SC, Basu RK, Curley JF, Smith RD, Hayashida T (2009) TGF-beta signal transduction in chronic kidney disease. Front Biosci 14:2448–2465

    Article  CAS  Google Scholar 

  38. Herman-Edelstein M, Weinstein T, Gafter U (2013) TGFbeta1-dependent podocyte dysfunction. Curr Opin Nephrol Hypertens 22:93–99

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y (2006) Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int 69:213–217

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7:684–696

    Article  CAS  PubMed  Google Scholar 

  41. Bottinger EP, Bitzer M (2002) TGF-beta signaling in renal disease. J Am Soc Nephrol 13:2600–2610

    Article  PubMed  Google Scholar 

  42. Sharma K, McGowan TA (2000) TGF-beta in diabetic kidney disease: role of novel signaling pathways. Cytokine Growth Factor Rev 11:115–123

    Article  CAS  PubMed  Google Scholar 

  43. Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ, Danielpour D (2002) The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem 277:1240–1248

    Article  CAS  PubMed  Google Scholar 

  44. Wrana JL (2000) Regulation of Smad activity. Cell 100:189–192

    Article  CAS  PubMed  Google Scholar 

  45. Wrana JL, Attisano L (2000) The Smad pathway. Cytokine Growth Factor Rev 11:5–13

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China Grant 31071026, 31271263, 81470040 to X. Liang, 81450033 to R. Li; National Science and Technology Support Program, China (2011BAI0B01) and International Cooperative Program of Shanxi Province, China (2014081054) to R. Li.

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiubin Liang or Rongshan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shen, Y., Li, M. et al. Inhibitory effects of peroxisome proliferator-activated receptor γ agonists on collagen IV production in podocytes. Mol Cell Biochem 405, 233–241 (2015). https://doi.org/10.1007/s11010-015-2414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2414-2

Keywords

Navigation