Skip to main content

Advertisement

Log in

Hyperhomocysteinemia regulated SCF expression in cultured cardiomyocytes via modulation of NF-κB activities

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia (HHcy) is an important, independent risk factor for coronary artery disease, especially for the myocardial infarction. Our previous study has shown that myocardial stem cell factor (SCF) mediated cardiac stem cells migration, which was involved in cardiac repair. However, it is not clear regarding the action of HHcy on the expression of SCF in cardiomyocytes. In the present study, cultured neonatal rat cardiomyocytes were treated with 20, 50, or 100 μM homocysteine (Hcy) for 5 h. Results showed an significantly increase of SCF expression with 20–50 μM Hcy incubation, which matched with elevated nuclear factor-kappaB (NF-κB) activities. Treatment with NF-κB inhibitor N-acetylcysteine significantly inhibited the increase of SCF. Nevertheless, 100 μM Hcy markedly decreased the expression of SCF, which was in accordance with the suppression of NF-κB activities. The present study indicated that HHcy regulated the expression of SCF in a concentration-dependent manner via modulation of NF-κB activities. Thus, HHcy may increase the risk for cardiovascular diseases not only by causing endothelial dysfunction but also by directly exerting detrimental effects on cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang R, Ma J, Xia M, Zhu H, Ling W (2004) Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. J Nutr 134:825–830

    CAS  PubMed  Google Scholar 

  2. Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325:1202

    Article  PubMed Central  PubMed  Google Scholar 

  3. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac pro-genitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100:12313–12318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Böhm M, Quanini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102:8966–8971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  CAS  PubMed  Google Scholar 

  6. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA 102:3766–3771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kajstura J, Urbanek K, Rota M, Bearzi C, Hosoda T, Bolli R, Anversa P, Leri A (2008) Cardiac stem cells and myocardial disease. J Mol Cell Cardiol 45:505–513

    Article  CAS  PubMed  Google Scholar 

  8. Lunde K, Aakhus S (2008) Cell therapy in acute myocardial infarction: measures of efficacy. Heart 94:969–970

    Article  PubMed  Google Scholar 

  9. Vandervelde S, van Luyn MJ, Tio RA, Harmsen MC (2005) Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 39:363–376

    Article  CAS  PubMed  Google Scholar 

  10. Wang CH, Verma S, Hsieh IC, Hung A, Cheng TT, Wang SY, Liu YC, Stanford WL, Weisel RD, Li RK, Cherng WJ (2007) Stem cell factor attenuates vascular smooth muscle apoptosis and increases intimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol 27:540–547

    Article  PubMed  Google Scholar 

  11. Kuang D, Zhao X, Xiao G, Ni J, Feng Y, Wu R, Wang G (2008) Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol 103:265–273

    Article  CAS  PubMed  Google Scholar 

  12. Guo J, Jie W, Kuang D, Ni J, Chen D, Ao Q, Wang G (2009) Ischaemia/reperfusion induced cardiac stem cell homing to the injured myocardium by stimulating stem cell factor expression via NF-kappaB pathway. Int J Exp Pathol 90:355–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56:111–128

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 274:1049–1057

    Article  CAS  PubMed  Google Scholar 

  15. Parnetti L, Caso V, Santucci A, Corea F, Lanari A, Floridi A, Conte C, Bottiqlieri T (2004) Mild hyperhomocysteinemia is a risk-factor in all etiological subtypes of stroke. Neurol Sci 25:13–17

    Article  CAS  PubMed  Google Scholar 

  16. Yue TL, Wang C, Romanic AM, Kikly K, Keller P, Jr DeWolfWE, Hart TK, Thomas HC, Storer B, Gu JL, Wang X, Feuerstein GZ (1998) Staurosporine-induced apoptosis in cardiomyocytes: a potential role of caspase-3. J Mol Cell Cardiol 30:495–507

    Article  CAS  PubMed  Google Scholar 

  17. Bianchi A, Moulin D, Hupont S, Koufany M, Netter P, Reboul P, Jouzeau JY (2014) Oxidative stress-induced expression of HSP70 contributes to the inhibitory effect of 15d-PGJ2 on inducible prostaglandin pathway in chondrocytes. Free Radic Biol Med 76:114–126

    Article  CAS  PubMed  Google Scholar 

  18. Spagnuolo G, D’Antò V, Cosentino C, Schmalz G, Schweikl H, Rengo S (2006) Effect of N-acetyl-l-cysteine on ROS production and cell death caused by HEMA in human primary gingival fibroblasts. Biomaterials 27:1803–1809

    Article  CAS  PubMed  Google Scholar 

  19. Rieber M, Rieber MS (2003) N-Acetylcysteine enhances UV-mediated caspase-3 activation, fragmentation of E2F-4, and apoptosis in human C8161 melanoma: inhibition by ectopic Bcl-2 expression. Biochem Pharmacol 65:1593–1601

    Article  CAS  PubMed  Google Scholar 

  20. Min KJ, Jou I, Joe E (2003) Plasminogen-induced IL-1beta and TNF-alpha production in microglia is regulated by reactive oxygen species. Biochem Biophys Res Commun 312:969–974

    Article  CAS  PubMed  Google Scholar 

  21. Nho CW, O’Dwyer PJ (2004) NF-kappaB activation by the chemopreventive dithiolethione oltipraz is exerted through stimulation of MEKK3 signaling. J Biol Chem 279:26019–26027

    Article  CAS  PubMed  Google Scholar 

  22. Evans SM, Mummery C, Doevendans PA (2007) Progenitor cells for cardiac repair. Semin Cell Dev Biol 18:153–160

    Article  CAS  PubMed  Google Scholar 

  23. Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 5:1373–1416

    Article  Google Scholar 

  24. Da Silva CA, Heilbock C, Kassel O, Frossard N (2003) Transcription of stem cell factor (SCF) is potentiated by glucocorticoids and interleukin-1beta through concerted regulation of a GRE-like and an NF-kappaB response element. FASEB J 17:2334–2336

    PubMed  Google Scholar 

  25. Fazel SS, Chen L, Angoulvant D, Li SH, Weisel RD, Keating A, Li RK (2008) Activation of c-kit is necessary for mobilization of reparative bone marrow progenitor cells in response to cardiac injury. FASEB J 22:930–940

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Yong-Yi B, Luo LM, Xiao WK, Wu HM, Ye P (2014) Association between serum homocysteine and arterial stiffness in elderly: a community-based study. J Geriatr Cardiol 11:32–38

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Durand P, Prost M, Loreau N, Lussier-Cacan S, Blache D (2001) Impaired homocysteine metabolism and atherothrombotic disease. Lab Investig 81:645–672

    Article  CAS  PubMed  Google Scholar 

  28. Nygard O, Vollset SE, Refsum H, Brattström L, Ueland PM (1999) Total homocysteine and cardiovascular disease. J Intern Med 246:425–454

    Article  CAS  PubMed  Google Scholar 

  29. Sipkens JA, Krijnen PA, Hahn NE, Wassink M, Meischl C, Smith DE, Musters RJ, Stehouwer CD, Rauwerda JA, van Hinsbergh VW, Niessen HW (2011) Homocysteine-induced cardiomyocyte apoptosis and plasma membrane flip-flop are independent of S-adenosylhomocysteine: a crucial role for nuclear p47phox. Mol Cell Biochem 358:229–239

    Article  CAS  PubMed  Google Scholar 

  30. Sipkens JA, Krijnen PA, Meischl C, Cillessen SA, Smulders YM, Smith DE, Giroth CP, Spreeuwenberg MD, Musters RJ, Muller A, Jakobs C, Roos D, Stehouwer CD, Rauwerda JA, van Hins- bergh VW, Niessen HW (2007) Homocysteine affects cardiomyocyte viability: concentration-dependent effects on reversible flip-flop, apoptosis and necrosis. Apoptosis 12:1407–1418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Wang X, Cui L, Joseph J, Jiang B, Pimental D, Handy DE, Liao R, Loscalzo J (2012) Homocysteine induces cardiomyocytes dysfunction and apoptosis through p38 MAPK-mediated increase in oxidant stress. J Mol Cell Cardiol 52:753–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Becker JS, Adler A, Schneeberger A, Huang H, Wang Z, Walsh E, Koller A, Hintze TH (2005) Hyperhomocysteinemia, a cardiac metabolic disease: role of nitric oxide and the p22phox subunit of NADPH oxidase. Circulation 111:2112–2118

    Article  CAS  PubMed  Google Scholar 

  33. Suematsu N, Ojaimi C, Kinugawa S, Wang Z, Xu X, Koller A, Recchia FA, Hintze TH (2007) Hyperhomocysteinemia alters cardiac substrate metabolism by impairing nitric oxide bioavailability through oxidative stress. Circulation 115:255–262

    Article  CAS  PubMed  Google Scholar 

  34. Rodrigo R, Parra M, Bosco C, Fernández V, Barja P, Guajardo J, Messina R (2005) Pathophysiological basis for the prophylaxis of preeclampsia through early supplementation with antioxidant vitamins. Pharmacol Ther 107:177–197

    Article  CAS  PubMed  Google Scholar 

  35. Woo CW, Siow YL, Karmin O (2008) Homocysteine induces monocyte chemoattractant protein-1 expression in hepatocytes mediated via activator protein-1 activation. J Biol Chem 283:1282–1292

    Article  CAS  PubMed  Google Scholar 

  36. Zhang L, Jin M, Hu X (2006) Homocysteine stimulates nuclear factor κB activity and interleukin-6 expression in rat vascular smooth muscle cells. Cell Biol Int 30:592–597

    Article  CAS  PubMed  Google Scholar 

  37. Roth J, Goebeler M, Ludwig S, Wagner L, Kilian K, Sorg C, Harms E, Schulze-Osthoff K, Koch H (2001) Homocysteine inhibits tumor necrosis factor-induced activation of endothelium via modulation of nuclear factor-kappaB activity. Biochim Biophys Acta 1540:154–165

    Article  CAS  PubMed  Google Scholar 

  38. Stangl V, Günther C, Jarrin A, Bramlage P, Moobed M, Staudt A, Baumann G, Stangl K, Felix SB (2001) Homocysteine inhibits TNF-alpha-induced endothelial adhesion molecule expression and monocyte adhesion via nuclear factor-kappaB dependent pathway. Biochem Biophys Res Commun 280:1093–1100

    Article  CAS  PubMed  Google Scholar 

  39. Dröge W, Schulze-Osthoff K, Mihm S, Galter D, Schenk H, Eck HP, Roth S, Gmünder H (1994) Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J 8:1131–1138

    PubMed  Google Scholar 

  40. Schulze-Osthoff K, Los M, Baeuerle PA (1995) Redox signalling by transcription factors NF-κB and AP-1 in lymphocytes. Biochem Pharmacol 50:735–741

    Article  CAS  PubMed  Google Scholar 

  41. Mercie P, Garnier O, Lascoste L, Renard M, Closse C, Durrieu F, Marit G, Boisseau RM, Belloc F (2000) Homocysteine-thiolactone induces caspase-independent vascular endothelial cell death with apoptotic features. Apoptosis 5:403–411

    Article  CAS  PubMed  Google Scholar 

  42. Jakubowski H (1999) Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J 13:2277–2283

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research Grants 81200106, 81000048, 31271040, and 81270176 from the National Natural Science Foundation of China.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Kuang, D., Duan, Y. et al. Hyperhomocysteinemia regulated SCF expression in cultured cardiomyocytes via modulation of NF-κB activities. Mol Cell Biochem 405, 197–203 (2015). https://doi.org/10.1007/s11010-015-2411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2411-5

Keywords

Navigation