Molecular and Cellular Biochemistry

, Volume 406, Issue 1–2, pp 9–20 | Cite as

Hesperidin ameliorates trichloroethylene-induced nephrotoxicity by abrogation of oxidative stress and apoptosis in wistar rats

  • Aisha Siddiqi
  • Sana Nafees
  • Summya Rashid
  • Sarwat SultanaEmail author
  • Bano Saidullah


Trichloroethylene (TCE), a nephrotoxicant is known to cause severe damage to the kidney. In this study, the nephroprotective potential of hesperidin was evaluated against TCE-induced nephrotoxicity in wistar rats. Oral administration of TCE (1000 mg/kg b.wt) for 15 days enhanced renal lipid peroxidation and reduced antioxidant enzymes armoury viz., reduced renal glutathione, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, catalase and superoxide dismutase. It also enhanced the levels of blood urea nitrogen, creatinine and kidney injury molecule (KIM-1). Caspase-3 and bax expression were found to be elevated, while that of bcl-2 reduced suggesting that TCE induces apoptosis. However, pretreatment with hesperidin at a dose of 100 and 200 mg/kg b.wt for 15 days significantly decreased lipid peroxidation, increased the levels of antioxidant enzymes and reduced blood urea, creatinine and KIM-1 levels. Hesperidin also modulated the apoptotic pathways by altering the expressions of caspase-3, bax and bcl-2 to normal. Our results suggest that hesperidin can be used as a nephroprotective agent against TCE-induced nephrotoxicity.

Graphical Abstract


Trichloroethylene Nephrotoxicity Hesperidin Oxidative stress Apoptosis 









Glutathione peroxidase




Glutathione reductase




Lipid peroxidation




Post-mitochondrial supernatant


Superoxide dismutase


Blood urea nitrogen


Kidney injury molecule




Reactive oxygen species



The author (SS), Jamia Hamdard University acknowledge the help given to the student (AS) for getting registered to PhD in Indira Gandhi National Open University, New Delhi, India.

Conflict of interest

The authors of the present research work do not have any conflict of interest.


  1. 1.
    Chiu WA, Jinot J, Scott CS, Makris SL, Cooper GS, Dzubow RC, Bale AS, Evans MV, Guyton KZ, Keshava N, Lipscomb JC, Barone S Jr, Fox JF, Gwinn MR, Schaum J, Caldwell JC (2013) Human health effects of trichloroethylene: key findings and scientific issues. Environ Health Perspect 121:303–311PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lash LH, Qian W, Putt DA, Hueni SE, Elfarra AA, Krause RJ, Parker JC (2001) Renal and hepatic toxicity of trichloroethylene and its glutathione-derived metabolites in rats and mice: sex-, species-, and tissue-dependent differences. Pharmacol Exp Ther 297:155–164Google Scholar
  3. 3.
    NRC (National Research Council) (2006) Assessing the human health risks of trichloroethylene: key scientific issues. The National Academies Press, Washington, DCGoogle Scholar
  4. 4.
    Zhao Y, Krishnadasan A, Kennedy N, Morgenstern H, Ritz B (2005) Estimated effects of solvents and mineral oils on cancer incidence and mortality in a cohort of aerospace workers. Am J Ind Med 48:249–258PubMedCrossRefGoogle Scholar
  5. 5.
    Charbotel B, Fevotte J, Hours M, Martin JL, Bergeret A (2006) Case-control study on renal cell cancer and occupational exposure to trichloroethylene. Part II: epidemiological aspects. Ann Occup Hyg 50:777–787PubMedCrossRefGoogle Scholar
  6. 6.
    Moore L, Boffetta P, Karami S, Brennan P, Stewart P, Hung R, Zaridze D, Matveev V, Janout V, Kollarova H, Bencko V, Navratilova M, Szeszenia-Dabrowska N, Mates D, Gromiec J, Holcatova I, Merino M, Chanock S, Chow W, Rothman N (2010) Occupational trichloroethylene exposure and renal carcinoma risk: evidence of genetic susceptibility by reductive metabolism gene variants. Cancer Res 70:6527–6536PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Lock EJ, Reed CJ (2006) Trichloroethylene: mechanisms of renal toxicity and renal cancer and relevance to risk assessment. Toxicol Sci 91:313–331PubMedCrossRefGoogle Scholar
  8. 8.
    Lock EA (2010) Renal xenobiotic metabolism. In: McQueen CA (ed) Comprehensive toxicolology. Elsevier, Liverpool, pp 55–79CrossRefGoogle Scholar
  9. 9.
    Lash LH, Fisher JW, Lipscomb JC, Parker JC (2000) Metabolism of trichloroethylene. Environ Health Perspect 108:177–200PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479–3485Google Scholar
  11. 11.
    Mates JM, Segura JA, Alonso FJ, Márquez J (2011) Anticancer antioxidant regulatory functions of phytochemicals. Curr Med Chem 18:2315–2338PubMedCrossRefGoogle Scholar
  12. 12.
    Fu Z, Zhen W, Yuskavage J, Liu D (2011) Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr 105:1218–1225PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hail N Jr, Cortes M, Drake E, Spallholz J (2008) Cancer chemoprevention: a radical perspective. Free Radic Biol Med 45:97–110PubMedCrossRefGoogle Scholar
  14. 14.
    Tan AC, Konczak I, Sze DM, Ramzan I (2011) Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer 63:495–505PubMedCrossRefGoogle Scholar
  15. 15.
    Assini JM, Mulvihill EE, Huff MW (2013) Citrus flavonoids and lipid metabolism. Curr Opin Lipidol 24:34–40PubMedCrossRefGoogle Scholar
  16. 16.
    Izzi V, Masuelli L, Tresoldi I, Sacchetti P, Modesti A, Galvano F, Bei R (2012) The effects of dietary flavonoids on the regulation of redox inflammatory networks. Front Biosci 17:2396–2418CrossRefGoogle Scholar
  17. 17.
    Kay CD, Hooper L, Kroon PA, Rimm EB, Cassidy A (2012) Relative impact of flavonoid composition, dose and structure on vascular function: a systematic review of randomized controlled trials of flavonoid-rich food products. Mol Nutr Food Res 56:1605–1616PubMedCrossRefGoogle Scholar
  18. 18.
    Clere N, Faure S, Martinez MC, Andriantsitohaina R (2011) Anticancer properties of flavonoids: roles in various stages of carcinogenesis. Cardiovasc Hematol Agents Med Chem 9:62–77PubMedCrossRefGoogle Scholar
  19. 19.
    Wilmsen PK, Spada DS, Salvador M (2005) Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem 53:4757–4761PubMedCrossRefGoogle Scholar
  20. 20.
    Berkarda B, Koyuncu H, Soybir G, Baykut F (1998) Inhibitory effect of hesperidin on tumour initiation and promotion in mouse skin. Res Exp Med (Berl) 198:93–99CrossRefGoogle Scholar
  21. 21.
    Lee CJ, Wilson L, Jordan MA, Nguyen V, Tang J, Smiyun G (2010) Hesperidin suppressed proliferations of both human breast cancer and androgen-dependent prostate cancer cells. Phytother Res 24:S15–S19PubMedCrossRefGoogle Scholar
  22. 22.
    Kamaraj S, Anandakumar P, Jagan S, Ramakrishnan G, Devaki T (2011) Hesperidin attenuates mitochondrial dysfunction during benzo(a)pyrene-induced lung carcinogenesis in mice. Fundam Clin Pharmacol 25:91–98PubMedCrossRefGoogle Scholar
  23. 23.
    Saiprasad G, Chitra P, Manikandan R, Sudhandiran G (2013) Hesperidin alleviates oxidative stress and downregulates the expressions of proliferative and inflammatory markers in azoxymethane-induced experimental coloncarcinogenesis in mice. Inflamm Res 62:425–440PubMedCrossRefGoogle Scholar
  24. 24.
    Kaur G, Tirkey N, Chopra K (2006) Beneficial effect of hesperidin on lipopolysaccharide-induced hepatotoxicity. Toxicology 226:152–160PubMedCrossRefGoogle Scholar
  25. 25.
    Anandan R, Subramanian P (2012) Renal protective effect of hesperidin on gentamicin-induced acute nephrotoxicity in male Wistar albino rats. Redox Rep 17:219–226PubMedCrossRefGoogle Scholar
  26. 26.
    Sahu BD, Kuncha M, Sindhura GJ, Sistla R (2013) Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine 20:453–460PubMedCrossRefGoogle Scholar
  27. 27.
    Khan S, Priyamvada S, Khan SA, Khan W, Farooq N, Khan F, Yusufi AN (2009) Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues. Food Chem Toxicol 47:1562–1568PubMedCrossRefGoogle Scholar
  28. 28.
    Ahmad ST, Sultana S (2011) Tannic acid mitigates cisplatin-induced nephrotoxicity in mice. Hum Exp Toxicol 31:145–156PubMedCrossRefGoogle Scholar
  29. 29.
    Wright JR, Colby HD, Miles PR (1981) Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch Biochem Biophys 206:296–304PubMedCrossRefGoogle Scholar
  30. 30.
    Jollow DJ, Mitchell JR, Zampaglione N, Gillete JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169PubMedCrossRefGoogle Scholar
  31. 31.
    Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller DJ (1984) Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney: possible implications in analgesic nephropathy. Biochem Pharmacol 33:1801–1807PubMedCrossRefGoogle Scholar
  32. 32.
    Carlberg I, Mannervik B (1975) Glutathione reductase levels in rat brain. J Biol Chem 250:5475–5479PubMedGoogle Scholar
  33. 33.
    Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods in oxygen radical research. CRC, Boca Raton, pp 283–284Google Scholar
  34. 34.
    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474PubMedCrossRefGoogle Scholar
  35. 35.
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  36. 36.
    Kanter M (1975) Clinical chemistry. The Bobber Merrill Company Inc, IndianapolisGoogle Scholar
  37. 37.
    Hare RS (1950) Endogenous creatinine in serum and urine. Proc Soc Exp Biol Med 74:148–151PubMedCrossRefGoogle Scholar
  38. 38.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  39. 39.
    Cojocel C, Beuter W, Müller W, Mayer D (1989) Lipid peroxidation: a possible mechanism of trichloroethylene-induced nephrotoxicity. Toxicology 55:131–141PubMedCrossRefGoogle Scholar
  40. 40.
    McGoldrick TA, Lock EA, Rodilla V, Hawksworth GM (2003) Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubule cells. Arch Toxicol 77:365–370PubMedCrossRefGoogle Scholar
  41. 41.
    Vaidya VS, Shankar L, Lock EA, Bucci TJ, Mehendale HM (2003) Renal injury and repair following S-1,2-dichlorovinyl-l-cysteine administration to mice. Toxicol Appl Pharmacol 188:110–121PubMedCrossRefGoogle Scholar
  42. 42.
    Tripoli E, Guardia ML, Giammanco S, Majo DD, Giammanco M (2007) Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem 104:466–479CrossRefGoogle Scholar
  43. 43.
    Williams RJ, Spencer JPE, Rice-Evans C (2004) Serial review: flavonoids and isoflavonones (Phytoestrogens): absorption, metabolism and bioactivity. Free Radic Biol Med 36:838–849PubMedCrossRefGoogle Scholar
  44. 44.
    Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356PubMedCrossRefGoogle Scholar
  45. 45.
    Sharififar F, Dehghn-Nudeh G, Mirtajaldini M (2009) Major flavonoids with antioxidant activity from Teucrium polium. Food Chem 112:885–888CrossRefGoogle Scholar
  46. 46.
    Pal RS, Ariharasivakumar G, Girhepunjhe K, Upadhay A (2009) In-vitro antioxidative activity of phenolic and flavonoids compounds extracted from seeds of Abrus precatorius. Int J Pharm Sci 1:136–140Google Scholar
  47. 47.
    Garg A, Garg S, Zaneveld LJD, Singla AK (2001) Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res 15:655–669PubMedCrossRefGoogle Scholar
  48. 48.
    Tanaka T, Tanaka T, Tanaka M, Kuno T (2012) Cancer chemoprevention by citrus pulp and juices containing high amounts of β-cryptoxanthin and hesperidin. J Biomed Biotechnol 2012:1–10CrossRefGoogle Scholar
  49. 49.
    Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–630PubMedCrossRefGoogle Scholar
  50. 50.
    Marnett LJ (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424:83–95PubMedCrossRefGoogle Scholar
  51. 51.
    Kunwar A, Priyadarsini KI (2011) Free radicals, oxidative stress and importance of antioxidants in human health. J Med Allied Sci 1:53–60Google Scholar
  52. 52.
    Torasson M, Clark J, Dankovic D, Mathias P, Skaggs S, Walker C, Werren D (1999) Oxidativestress and DNA damage in Fisher rats following acute exposure to trichloroethylene or perchloroethylene. Toxicology 138:43–53CrossRefGoogle Scholar
  53. 53.
    Tabrez S, Ahmad M (2011) Some enzymatic/nonenzymatic antioxidants as potential stress biomarkers of trichloroethylene, heavy metal mixture, and ethyl alcohol in rat tissues. Environ Toxicol 26:207–216PubMedCrossRefGoogle Scholar
  54. 54.
    Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503PubMedCrossRefGoogle Scholar
  55. 55.
    Ahmadi A, Hosseinimehr SJ, Naghshvar F, Hajir E, Ghahremani M (2008) Chemoprotective effects of hesperidin against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Arch Pharmacol Res 31:794–797CrossRefGoogle Scholar
  56. 56.
    Abdel-Raheem IT, Abdel-Ghany AA (2009) Hesperidin alleviates doxorubicin-induced cardiotoxicity in rats. J Egypt Natl Cancer Inst 21:175Google Scholar
  57. 57.
    Pires Das Neves RN, Carvalho F, Carvalho M, Fernandes E, Soares E, Bas-tos MDL, Pereira MDL (2004) Protective activity of hesperidin and lipoic acid against sodium arsenite acute toxicity in mice. Toxicol Pathol 32:527–535CrossRefGoogle Scholar
  58. 58.
    Ibrahim SS (2008) Protective effect of hesperidin, a citrus bioflavonoid, on 693 diabetes-induced brain damage in rats. J Appl Sci Res 4:84–95Google Scholar
  59. 59.
    Tirkey N, Pilkhwal S, Kuhad A, Chopra K (2005) Hesperidin, a citrus bioflavonoid, decreases the oxidative stress produced by carbon tetrachloride in rat liver and kidney. BMC Pharmacol 5:2PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Gharib OA, Gharib MA (2008) Kombucha tea ameliorates trichloroethylene induced hepatic damages in rats via inhibition of oxidative stress and free radicals induction. Egypt J Sci Appl 21:481–498Google Scholar
  61. 61.
    Bonventre JV (2009) Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transpl 24:3265–3268CrossRefGoogle Scholar
  62. 62.
    Bonventre JV, Yang L (2010) Kidney injury molecule-1. Curr Opin Crit Care 16:556–561PubMedCrossRefGoogle Scholar
  63. 63.
    Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777–21781PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Porter AG (2006) Flipping the safety catch of procaspase-3. Nat Chem Biol 2:509–510PubMedCrossRefGoogle Scholar
  65. 65.
    Xu F, Papanayotou I, Putt DA, Wang J, Lash LH (2008) Role of mitochondrial dysfunction in cellular responses to S-(1,2-dichlorovinyl)-l-cysteine in primary cultures of human proximal tubular cells. Biochem Pharmacol 76:552–567PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Hacker G, Weber A (2007) BH3-only proteins trigger cytochrome c release, but how? Arch Biochem Biophys 462:150–155PubMedCrossRefGoogle Scholar
  67. 67.
    Carthy CM, Yanagawa B, Luo H, Granville DJ, Yang D, Cheung P, Cheung C, Esfandiarei M, Rudin CM, Thompson CB, Hunt DWC, McManus BM (2003) Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection. Virology 313:147–157PubMedCrossRefGoogle Scholar
  68. 68.
    Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B, Vallette FM (2007) Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12:887–896PubMedCrossRefGoogle Scholar
  69. 69.
    Teijido O, Dejean L (2010) Upregulation of Bcl2 inhibits apoptosis-driven BAX insertion but favors BAX relocalization in mitochondria. FEBS Lett 584:3305–3310PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Aisha Siddiqi
    • 2
  • Sana Nafees
    • 1
  • Summya Rashid
    • 1
  • Sarwat Sultana
    • 1
    Email author
  • Bano Saidullah
    • 2
  1. 1.Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of ScienceJamia Hamdard (Hamdard University)New DelhiIndia
  2. 2.Discipline of Life Sciences, School of SciencesIndira Gandhi National Open UniversityNew DelhiIndia

Personalised recommendations