Skip to main content
Log in

Effects of delayed motherhood on hippocampal gene expression in offspring rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

While many studies have examined the pregnancy and health-related outcomes of delayed motherhood for women, less is known concerning the potential consequences for their children. This study aims to investigate the effect of delayed motherhood on the hippocampus at the whole genome level. Sprague–Dawley rat females, either at the age of 3 or 12 months, were individually housed with a randomly selected 3-month-old male. The rat whole genome expression chips were used to detect gene expression differences in the hippocampus of newborn rats. The gene expression profile was studied through gene ontology and signal pathway analyses. qRT-PCR was used to determine the mRNA expression of solute carrier family 2 (SLC2A1) and S-phase kinase-associated protein 2 (SKP2). Western blot was used to detect the protein expression of SKP2. Compared to the control group, 1291 differentially expressed genes were detected, including 635 up-regulated genes and 656 down-regulated genes. These differential expressed genes were involved in 110 significant biological process and nine significant signaling pathways, in which the pathway in cancer is the most changed pathway. For SKP2 (up-regulated) and SLC2A1 (up-regulated) genes which were relevant to the pathway in cancer, qRT-PCR results were consistent with gene chip assay results. The upregulation of SKP2 was also demonstrated at protein level. In conclusion, delayed motherhood led to unique patterns of hippocampal gene expression in offspring and the newly identified genes afford a quantitative view of the changes which enable deeper insights into the molecular basis underlying the role of delayed motherhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vohr BR, Tyson JE, Wright LL, Perritt RL, Li L, Poole WK, Network NNR (2009) Maternal age, multiple birth, and extremely low birth weight infants. J Pediatr 154(498–503):e2. doi:10.1016/j.jpeds.2008.10.044

    PubMed  Google Scholar 

  2. Tough SC, Newburn-Cook C, Johnston DW, Svenson LW, Rose S, Belik J (2002) Delayed childbearing and its impact on population rate changes in lower birth weight, multiple birth, and preterm delivery. Pediatrics 109:399–403

    Article  PubMed  Google Scholar 

  3. Huang L, Sauve R, Birkett N, Fergusson D, van Walraven C (2008) Maternal age and risk of stillbirth: a systematic review. CMAJ 178:165–172. doi:10.1503/cmaj.070150

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hassold T, Chiu D (1985) Maternal age-specific rates of numerical chromosome abnormalities with special reference to trisomy. Hum Genet 70:11–17

    Article  CAS  PubMed  Google Scholar 

  5. Lopez-Castroman J, Gomez DD, Belloso JJ, Fernandez-Navarro P, Perez-Rodriguez MM, Villamor IB, Navarrete FF, Ginestar CM, Currier D, Torres MR, Navio-Acosta M, Saiz-Ruiz J, Jimenez-Arriero MA, Baca-Garcia E (2010) Differences in maternal and paternal age between schizophrenia and other psychiatric disorders. Schizophr Res 116:184–190. doi:10.1016/j.schres.2009.11.006

    Article  PubMed  Google Scholar 

  6. Tarín JJ, Brines J, Cano A (1998) Long-term effects of delayed parenthood. Hum Reprod 13:2371–2376

    Article  PubMed  Google Scholar 

  7. Bushnik T, Garner R (2008) The children of older first-time mothers in Canada: their health and development. Statistics Canada, Ottawa

    Google Scholar 

  8. Tarin JJ, Gomez-Piquer V, Manzanedo C, Minarro J, Hermenegildo C, Cano A (2003) Long-term effects of delayed motherhood in mice on postnatal development and behavioural traits of offspring. Hum Reprod 18:1580–1587

    Article  PubMed  Google Scholar 

  9. Auroux MR, Mayaux MJ, Guihard-Moscato ML, Fromantin M, Barthe J, Schwartz D (1989) Paternal age and mental functions of progeny in man. Hum Reprod 4:794–797

    CAS  PubMed  Google Scholar 

  10. Zybert P, Stein Z, Belmont L (1978) Maternal age and children’s ability. Percept Mot Skills 47:815–818

    Article  CAS  PubMed  Google Scholar 

  11. Squire LR, Zola SM (1996) Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA 93:13515–13522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Osborne JD, Zhu LJ, Lin SM, Kibbe WA (2007) Interpreting microarray results with gene ontology and MeSH. Springer, Microarray Data Analysis, pp 223–241

    Google Scholar 

  13. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  CAS  PubMed  Google Scholar 

  14. Vorhees CV (1988) Maternal age as a factor in determining the reproductive and behavioral outcome of rats prenatally exposed to ethanol. Neurotoxicol Teratol 10:23–34

    Article  CAS  PubMed  Google Scholar 

  15. Nelson SM, Telfer EE, Anderson RA (2013) The ageing ovary and uterus: new biological insights. Hum Reprod Update 19:67–83. doi:10.1093/humupd/dms043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yamada-Fukunaga T, Yamada M, Hamatani T, Chikazawa N, Ogawa S, Akutsu H, Miura T, Miyado K, Tarin JJ, Kuji N, Umezawa A, Yoshimura Y (2013) Age-associated telomere shortening in mouse oocytes. Reprod Biol Endocrinol 11:108. doi:10.1186/1477-7827-11-108

    Article  PubMed Central  PubMed  Google Scholar 

  17. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662

    Article  CAS  PubMed  Google Scholar 

  18. Pillai MS, Sapna S, Shivakumar K (2011) p38 MAPK regulates G1-S transition in hypoxic cardiac fibroblasts. Int J Biochem Cell Biol 43:919–927. doi:10.1016/j.biocel.2011.03.007

    Article  CAS  PubMed  Google Scholar 

  19. Klepper J, Scheffer H, Elsaid M, Kamsteeg E-J, Leferink M, Ben-Omran T (2009) Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics 40:207–210

    Article  CAS  PubMed  Google Scholar 

  20. Airley RE, Mobasheri A (2007) Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53:233–256. doi:10.1159/000104457

    Article  CAS  PubMed  Google Scholar 

  21. Rudlowski C, Becker AJ, Schroder W, Rath W, Büttner R, Moser M (2003) GLUT1 messenger RNA and protein induction relates to the malignant transformation of cervical cancer. Am J Clin Pathol 120:691–698

    Article  CAS  PubMed  Google Scholar 

  22. Tsukioka M, Matsumoto Y, Noriyuki M, Yoshida C, Nobeyama H, Yoshida H, Yasui T, Sumi T, K-i Honda, Ishiko O (2007) Expression of glucose transporters in epithelial ovarian carcinoma: correlation with clinical characteristics and tumor angiogenesis. Oncol Rep 18:361–367

    CAS  PubMed  Google Scholar 

  23. Hoskin P, Sibtain A, Daley F, Wilson G (2003) GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON. Br J Cancer 89:1290–1297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121:29–40

    Article  CAS  PubMed  Google Scholar 

  25. Demetrick D, Zhang H, Beach D (1996) Chromosomal mapping of the genes for the human CDK2/cyclin A-associated proteins p19 (SKP1A and SKP1B) and p45 (SKP2). Cytogenet Genome Res 73:104–107

    Article  CAS  Google Scholar 

  26. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    Article  CAS  PubMed  Google Scholar 

  27. Sutterlüty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Müller U, Krek W (1999) p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1:207–214

    Article  PubMed  Google Scholar 

  28. Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N (2000) Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J 19:2069–2081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Marti A, Wirbelauer C, Scheffner M, Krek W (1999) Interaction between ubiquitin–protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1:14–19

    Article  CAS  PubMed  Google Scholar 

  30. Yu Z-K, Gervais JL, Zhang H (1998) Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21CIP1/WAF1 and cyclin D proteins. Proc Natl Acad Sci 95:11324–11329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Carrano AC, Pagano M (2001) Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J cell Biol 153:1381–1390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G, Pagano M (2001) Role of the F-box protein Skp2 in lymphomagenesis. Proc Natl Acad Sci USA 98:2515–2520. doi:10.1073/pnas.041475098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W (2001) Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci 98:5043–5048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kudo Y, Kitajima S, Sato S, Miyauchi M, Ogawa I, Takata T (2001) High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res 61:7044–7047

    CAS  PubMed  Google Scholar 

  35. Dockerty JD, Draper G, Vincent T, Rowan SD, Bunch KJ (2001) Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int J Epidemiol 30:1428–1437

    Article  CAS  PubMed  Google Scholar 

  36. Yip BH, Pawitan Y, Czene K (2006) Parental age and risk of childhood cancers: a population-based cohort study from Sweden. Int J Epidemiol 35:1495–1503. doi:10.1093/ije/dyl177

    Article  PubMed  Google Scholar 

  37. Johnson KJ, Carozza SE, Chow EJ, Fox EE, Horel S, McLaughlin CC, Mueller BA, Puumala SE, Reynolds P, Von Behren J (2009) Parental age and risk of childhood cancer: a pooled analysis. Epidemiology 20:475

    Article  PubMed Central  PubMed  Google Scholar 

  38. Xu B, Lee KK, Zhang L, Gerton JL (2013) Stimulation of mTORC1 with l-leucine rescues defects associated with Roberts syndrome. PLoS Genet 9:e1003857. doi:10.1371/journal.pgen.1003857

    Article  PubMed Central  PubMed  Google Scholar 

  39. Tung EW, Winn LM (2011) Valproic acid-induced DNA damage increases embryonic p27(KIP1) and caspase-3 expression: a mechanism for valproic-acid induced neural tube defects. Reprod Toxicol 32:255–260. doi:10.1016/j.reprotox.2011.05.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from National Natural Science Foundation of China (Grant No. 81171250). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Xing or Wenhai Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, P., Li, B., Li, C. et al. Effects of delayed motherhood on hippocampal gene expression in offspring rats. Mol Cell Biochem 405, 89–95 (2015). https://doi.org/10.1007/s11010-015-2399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2399-x

Keywords

Navigation