Skip to main content
Log in

Hydrogen sulfide mitigates homocysteine-mediated pathological remodeling by inducing miR-133a in cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

An elevated level of homocysteine called hyperhomocysteinemia (HHcy) is associated with pathological cardiac remodeling. Hydrogen sulfide (H2S) acts as a cardioprotective gas; however, the mechanism by which H2S mitigates homocysteine-mediated pathological remodeling in cardiomyocytes is unclear. We hypothesized that H2S ameliorates HHcy-mediated hypertrophy by inducing cardioprotective miR-133a in cardiomyocytes. To test the hypothesis, HL1 cardiomyocytes were treated with (1) plain medium (control, CT), (2) 100 µM of homocysteine (Hcy), (3) Hcy with 30 µM of H2S (Hcy + H2S), and (4) H2S for 24 h. The levels of hypertrophy markers: c-fos, atrial natriuretic peptide (ANP), and beta-myosin heavy chain (β-MHC), miR-133a, and its transcriptional inducer myosin enhancer factor-2C (MEF2C) were determined by Western blotting, RT-qPCR, and immunofluorescence. The activity of MEF2C was assessed by co-immunoprecipitation of MEF2C with histone deacetylase-1(HDAC1). Our results show that H2S ameliorates homocysteine-mediated up-regulation of c-fos, ANP, and β-MHC, and down-regulation of MEF2C and miR-133a. HHcy induces the binding of MEF2C with HDAC1, whereas H2S releases MEF2C from MEF2C–HDAC1 complex causing activation of MEF2C. These findings elicit that HHcy induces cardiac hypertrophy by promoting MEF2C–HDAC1 complex formation that inactivates MEF2C causing suppression of anti-hypertrophy miR-133a in cardiomyocytes. H2S mitigates hypertrophy by inducing miR-133a through activation of MEF2C in HHcy cardiomyocytes. To our knowledge, this is a novel mechanism of H2S-mediated activation of MEF2C and induction of miR-133a and inhibition of hypertrophy in HHcy cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HHcy:

Hyperhomocysteinemia

H2S:

Hydrogen sulfide

Hcy:

Homocysteine

ANP:

Atrial natriuretic peptide

β-MHC:

Beta-myosin heavy chain

MEF2C:

Myosin-specific enhancer factor 2C

References

  1. Ganguly P, Alam SF (2015) Role of homocysteine in the development of cardiovascular disease. Nutr J 14:6

    PubMed Central  PubMed  Google Scholar 

  2. McCully KS (2015) Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin Pharmacol 5:1–9

    Google Scholar 

  3. Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE (1997) Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 337:230–236

    Article  CAS  PubMed  Google Scholar 

  4. McCully KS (1996) Homocysteine and vascular disease. Nat Med 2:386–389

    Article  CAS  PubMed  Google Scholar 

  5. Mishra PK, Tyagi N, Kundu S, Tyagi SC (2009) MicroRNAs are involved in homocysteine-induced cardiac remodeling. Cell Biochem Biophys 55:153–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Vacek TP, Sen U, Tyagi N, Vacek JC, Kumar M, Hughes WM et al (2009) Differential expression of Gs in a murine model of homocysteinemic heart failure. Vasc Health Risk Manag 5:79–84

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Sen U, Mishra PK, Tyagi N, Tyagi SC (2010) Homocysteine to hydrogen sulfide or hypertension. Cell Biochem Biophys 57:49–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Barr LA, Calvert JW (2014) Discoveries of hydrogen sulfide as a novel cardiovascular therapeutic. Circ J 78:2111–2118

    Article  CAS  PubMed  Google Scholar 

  9. Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW et al (2010) Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 122:11–19

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lavu M, Bhushan S, Lefer DJ (2011) Hydrogen sulfide-mediated cardioprotection: mechanisms and therapeutic potential. Clin Sci (Lond) 120:219–229

    CAS  Google Scholar 

  11. Patel VB, McLean BA, Chen X, Oudit GY (2015) Hydrogen sulfide: an old gas with new cardioprotective effects. Clin Sci (Lond) 128:321–323

    Article  CAS  Google Scholar 

  12. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA 104:15560–15565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wu Z, Peng H, Du Q, Lin W, Liu Y (2015) GYY4137, a hydrogen sulfide-releasing molecule, inhibits the inflammatory response by suppressing the activation of nuclear factor kappa B and mitogen-activated protein kinases in Coxsackie virus B3-infected rat cardiomyocytes. Mol Med Rep 11:1837–1844

    CAS  PubMed  Google Scholar 

  14. Barr LA, Shimizu Y, Lambert JP, Nicholson CK, Calvert JW (2015) Hydrogen sulfide attenuates high fat diet-induced cardiac dysfunction via the suppression of endoplasmic reticulum stress. Nitric Oxide. doi:10.1016/j.niox.2014.12.013

    PubMed  Google Scholar 

  15. Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB et al (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105:365–374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK et al (2014) Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci USA 111:3182–3187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mishra PK, Givvimani S, Metreveli N, Tyagi SC (2010) Attenuation of beta2-adrenergic receptors and homocysteine metabolic enzymes cause diabetic cardiomyopathy. Biochem Biophys Res Commun 401:175–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tyagi AC, Sen U, Mishra PK (2011) Synergy of microRNA and stem cell: a novel therapeutic approach for diabetes mellitus and cardiovascular diseases. Curr Diabetes Rev 7:367–376

    Article  CAS  PubMed  Google Scholar 

  20. Leptidis S, El Azzouzi H, Lok SI, de Weger R, Olieslagers S, Kisters N et al (2013) A deep sequencing approach to uncover the miRNOME in the human heart. PLoS ONE 8:e57800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hedley PL, Carlsen AL, Christiansen KM, Kanters JK, Behr ER, Corfield VA et al (2014) MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome. Scand J Clin Lab Invest 74:485–491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW, Chakrabarti S (2014) Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 18:415–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, LE Dorn, Condorelli G et al (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106:166–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    Article  CAS  PubMed  Google Scholar 

  25. Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB et al (2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci USA 104:20844–20849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nebbioso A, Manzo F, Miceli M, Conte M, Manente L, Baldi A et al (2009) Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC–MEF2 complexes. EMBO Rep 10:776–782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Brattstrom L, Wilcken DE (2000) Homocysteine and cardiovascular disease: cause or effect? Am J Clin Nutr 72:315–323

    CAS  PubMed  Google Scholar 

  28. Chavali V, Tyagi SC, Mishra PK (2014) Differential expression of dicer, miRNAs, and inflammatory markers in diabetic Ins2+/− Akita hearts. Cell Biochem Biophys 68:25–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Maron BA, Loscalzo J (2009) The treatment of hyperhomocysteinemia. Annu Rev Med 60:39–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Liu J, Hao DD, Zhang JS, Zhu YC (2011) Hydrogen sulphide inhibits cardiomyocyte hypertrophy by up-regulating miR-133a. Biochem Biophys Res Commun 413:342–347

    Article  CAS  PubMed  Google Scholar 

  31. Chavali V, Tyagi SC, Mishra PK (2012) MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun 425:668–672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Cattaneo M (1999) Hyperhomocysteinemia, atherosclerosis and thrombosis. Thromb Haemost 81:165–176

    CAS  PubMed  Google Scholar 

  33. Jager A, Kostense PJ, Nijpels G, Dekker JM, Heine RJ, Bouter LM et al (2001) Serum homocysteine levels are associated with the development of (micro)albuminuria: the Hoorn study. Arterioscler Thromb Vasc Biol 21:74–81

    Article  CAS  PubMed  Google Scholar 

  34. Mishra PK, Tyagi N, Sen U, Joshua IG, Tyagi SC (2010) Synergism in hyperhomocysteinemia and diabetes: role of PPAR gamma and tempol. Cardiovasc Diabetol 9:49

    Article  PubMed Central  PubMed  Google Scholar 

  35. Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T et al (2006) Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 354:1578–1588

    Article  CAS  PubMed  Google Scholar 

  36. Marti-Carvajal AJ, Sola I, Lathyris D, Salanti G (2009) Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 1:CD006612

    Google Scholar 

  37. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M et al (2006) Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 354:1567–1577

    Article  CAS  PubMed  Google Scholar 

  38. Vizzardi E, Bonadei I, Zanini G, Frattini S, Fiorina C, Raddino R et al (2009) Homocysteine and heart failure: an overview. Recent Pat Cardiovasc Drug Discov 4:15–21

    Article  CAS  PubMed  Google Scholar 

  39. Feng B, Chen S, George B, Feng Q, Chakrabarti S (2010) miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 26:40–49

    Article  CAS  PubMed  Google Scholar 

  40. Martelli A, Testai L, Breschi MC, Blandizzi C, Virdis A, Taddei S et al (2012) Hydrogen sulphide: novel opportunity for drug discovery. Med Res Rev 32:1093–1130

    Article  CAS  PubMed  Google Scholar 

  41. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76:29–40

    Article  CAS  PubMed  Google Scholar 

  43. Tamizhselvi R, Sun J, Koh YH, Bhatia M (2009) Effect of hydrogen sulfide on the phosphatidylinositol 3-kinase-protein kinase B pathway and on caerulein-induced cytokine production in isolated mouse pancreatic acinar cells. J Pharmacol Exp Ther 329:1166–1177

    Article  CAS  PubMed  Google Scholar 

  44. Huang J, Wang D, Zheng J, Huang X, Jin H (2012) Hydrogen sulfide attenuates cardiac hypertrophy and fibrosis induced by abdominal aortic coarctation in rats. Mol Med Rep 5:923–928

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Chang L, Geng B, Yu F, Zhao J, Jiang H, Du J et al (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585

    Article  CAS  PubMed  Google Scholar 

  46. Vikstrom KL, Bohlmeyer T, Factor SM, Leinwand LA (1998) Hypertrophy, pathology, and molecular markers of cardiac pathogenesis. Circ Res 82:773–778

    Article  CAS  PubMed  Google Scholar 

  47. Carreno JE, Apablaza F, Ocaranza MP, Jalil JE (2006) Cardiac hypertrophy: molecular and cellular events. Rev Esp Cardiol 59:473–486

    Article  PubMed  Google Scholar 

  48. Woo CW, Siow YL, Karmin O (2008) Homocysteine induces monocyte chemoattractant protein-1 expression in hepatocytes mediated via activator protein-1 activation. J Biol Chem 283:1282–1292

    Article  CAS  PubMed  Google Scholar 

  49. Pal SA, Kaur T, SinghDahiya R, Singh N, Singh Bedi PM (2010) Ameliorative role of rosiglitazone in hyperhomocysteinemia-induced experimental cardiac hypertrophy. J Cardiovasc Pharmacol 56:53–59

    Article  Google Scholar 

  50. Snijder PM, de Boer RA, Bos EM, van den Born JC, Ruifrok WP, Vreeswijk-Baudoin I et al (2013) Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism. PLoS ONE 8:e63291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I et al (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104:170–178

    Article  CAS  PubMed  Google Scholar 

  52. Toldo S, Das A, Mezzaroma E, Chau VQ, Marchetti C, Durrant D et al (2014) Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovasc Genet 7:311–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from National Institute of Health grants: HL-113281 and HL-116205 to Paras K. Mishra is gratefully acknowledged. We would like to thank Bryan T Hackfort, a post doctoral fellow in our laboratory, for editing the final version of the manuscript.

Conflict of interest

Authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paras Kumar Mishra.

Additional information

Varun Kesherwani and Shyam Sundar Nandi contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesherwani, V., Nandi, S.S., Sharawat, S.K. et al. Hydrogen sulfide mitigates homocysteine-mediated pathological remodeling by inducing miR-133a in cardiomyocytes. Mol Cell Biochem 404, 241–250 (2015). https://doi.org/10.1007/s11010-015-2383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2383-5

Keywords

Navigation