Skip to main content
Log in

Na+/H+ exchanger isoform 1 induced osteopontin expression in cardiomyocytes involves NFAT3/Gata4

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Osteopontin (OPN), a multifunctional glycophosphoprotein, has been reported to contribute to the development and progression of cardiac remodeling and hypertrophy. Cardiac-specific OPN knockout mice were protected against hypertrophy and fibrosis mediated by Ang II. Recently, transgenic mice expressing the active form of the Na+/H+ exchanger isoform 1 (NHE1) developed spontaneous hypertrophy in association with elevated levels of OPN. The mechanism by which active NHE1 induces OPN expression and contributes to the hypertrophic response remains unclear. To validate whether expression of the active form of NHE1 induces OPN, cardiomyocytes were stimulated with Ang II, a known inducer of both OPN and NHE1. Ang II induced hypertrophy and increased OPN protein expression (151.6 ± 28.19 %, P < 0.01) and NHE1 activity in H9c2 cardiomyoblasts. Ang II-induced hypertrophy and OPN protein expression were regressed in the presence of an NHE1 inhibitor, EMD 87580, or a calcineurin inhibitor, FK506. In addition, our results indicated that activation of NHE1-induced NFAT3 translocation into the nucleus and a significant activation of the transcription factor Gata4 (NHE1: 149 ± 28 % of control, P < 0.05). NHE1-induced activation of Gata4 was inhibited by FK506. In summary, our results suggest that activation of NHE1 induces hypertrophy through the activation of NFAT3/Gata4 and OPN expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NHE1:

Na+/H+ exchanger isoform 1

OPN:

Osteopontin

NFAT:

Nuclear factor of activated T-cells

ANP:

Atrial natriuretic peptide

ERK:

Extracellular signal regulated kinase

Ang II:

Angiotensin II

References

  1. Kehat I, Molkentin JD (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122:2727–2735. doi:10.1161/CIRCULATIONAHA.110.942268

    Article  PubMed  Google Scholar 

  2. Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482

    CAS  PubMed  Google Scholar 

  3. Stawowy P, Blaschke F, Pfautsch P, Goetze S, Lippek F, Wollert-Wulf B, Fleck E, Graf K (2002) Increased myocardial expression of osteopontin in patients with advanced heart failure. Eur J Heart Fail 4(2):139–146

    Article  CAS  PubMed  Google Scholar 

  4. Wolak T, Sion-Vardi N, Novack V, Greenberg G, Szendro G, Tarnovscki T, Nov O, Shelef I, Paran E, Rudich A (2013) N-terminal rather than full-length osteopontin or its C-terminal fragment is associated with carotid-plaque inflammation in hypertensive patients. Am J Hypertens 26:326–333. doi:10.1093/ajh/hps043

    Article  CAS  PubMed  Google Scholar 

  5. Matsui Y, Jia N, Okamoto H, Kon S, Onozuka H, Akino M, Liu L, Morimoto J, Rittling SR, Denhardt D, Kitabatake A, Uede T (2004) Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy. Hypertension 43:1195–1201. doi:10.1161/01.HYP.0000128621.68160.dd

    Article  CAS  PubMed  Google Scholar 

  6. Xie Z, Pimental DR, Lohan S, Vasertriger A, Pligavko C, Colucci WS, Singh K (2001) Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species. J Cell Physiol 188:132–138. doi:10.1002/jcp.1104

    Article  CAS  PubMed  Google Scholar 

  7. Nilsson-Berglund LM, Zetterqvist AV, Nilsson-Ohman J, Sigvardsson M, Gonzalez Bosc LV, Smith ML, Salehi A, Agardh E, Fredrikson GN, Agardh CD, Nilsson J, Wamhoff BR, Hultgardh-Nilsson A, Gomez MF (2010) Nuclear factor of activated T cells regulates osteopontin expression in arterial smooth muscle in response to diabetes-induced hyperglycemia. Arterioscler Thromb Vasc Biol 30:218–224. doi:10.1161/ATVBAHA.109.199299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  CAS  PubMed  Google Scholar 

  9. Xue J, Mraiche F, Zhou D, Karmazyn M, Oka T, Fliegel L, Haddad GG (2010) Elevated myocardial Na+/H+ exchanger isoform 1 activity elicits gene expression that leads to cardiac hypertrophy. Physiol Genomics 42:374–383. doi:10.1152/physiolgenomics.00064.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Voelkl J, Lin Y, Alesutan I, Ahmed MS, Pasham V, Mia S, Gu S, Feger M, Saxena A, Metzler B, Kuhl D, Pichler BJ, Lang F (2012) Sgk1 sensitivity of Na(+)/H(+) exchanger activity and cardiac remodeling following pressure overload. Basic Res Cardiol 107:236. doi:10.1007/s00395-011-0236-2

    Article  PubMed  Google Scholar 

  11. Fliegel L (2009) Regulation of the Na(+)/H(+) exchanger in the healthy and diseased myocardium. Expert Opin Ther Targets 13:55–68. doi:10.1517/14728220802600707

    Article  CAS  PubMed  Google Scholar 

  12. Paletas K, Sailer X, Rizeq L, Dimitriadi A, Koliakos G, Kaloyianni M (2008) Angiotensin-II-dependent NHE1 activation in human monocytes. J Am Soc Hypertens 2:173–181. doi:10.1016/j.jash.2007.10.010

    Article  PubMed  Google Scholar 

  13. Costa-Pessoa JM, Figueiredo CF, Thieme K, Oliveira-Souza M (2013) The regulation of NHE(1) and NHE(3) activity by angiotensin II is mediated by the activation of the angiotensin II type I receptor/phospholipase C/calcium/calmodulin pathway in distal nephron cells. Eur J Pharmacol 721:322–331. doi:10.1016/j.ejphar.2013.08.043

    Article  CAS  PubMed  Google Scholar 

  14. Matsui H, Barry WH, Livsey C, Spitzer KW (1995) Angiotensin II stimulates sodium-hydrogen exchange in adult rabbit ventricular myocytes. Cardiovasc Res 29:215–221

    Article  CAS  PubMed  Google Scholar 

  15. Karmazyn M (2013) NHE-1: still a viable therapeutic target. J Mol Cell Cardiol 61:77–82. doi:10.1016/j.yjmcc.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  16. Mraiche F, Fliegel L (2011) Elevated expression of activated Na(+)/H(+) exchanger protein induces hypertrophy in isolated rat neonatal ventricular cardiomyocytes. Mol Cell Biochem 358:179–187. doi:10.1007/s11010-011-0933-z

    Article  CAS  PubMed  Google Scholar 

  17. Mraiche F, Oka T, Gan XT, Karmazyn M, Fliegel L (2011) Activated NHE1 is required to induce early cardiac hypertrophy in mice. Basic Res Cardiol 106:603–616. doi:10.1007/s00395-011-0161-4

    Article  CAS  PubMed  Google Scholar 

  18. Baczko I, Mraiche F, Light PE, Fliegel L (2008) Diastolic calcium is elevated in metabolic recovery of cardiomyocytes expressing elevated levels of the Na+/H+ exchanger. Can J Physiol Pharmacol 86:850–859. doi:10.1139/Y08-092

    Article  CAS  PubMed  Google Scholar 

  19. Hisamitsu T, Nakamura TY, Wakabayashi S (2012) Na(+)/H(+) exchanger 1 directly binds to calcineurin A and activates downstream NFAT signaling, leading to cardiomyocyte hypertrophy. Mol Cell Biol 32:3265–3280. doi:10.1128/MCB.00145-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Guo J, Gan XT, Haist JV, Rajapurohitam V, Zeidan A, Faruq NS, Karmazyn M (2011) Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail 4:79–88. doi:10.1161/CIRCHEARTFAILURE.110.957969

    Article  CAS  PubMed  Google Scholar 

  21. Kilic A, Velic A, De Windt LJ, Fabritz L, Voss M, Mitko D, Zwiener M, Baba HA, van Eickels M, Schlatter E, Kuhn M (2005) Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation 112:2307–2317. doi:10.1161/CIRCULATIONAHA.105.542209

    Article  CAS  PubMed  Google Scholar 

  22. Liu CJ, Cheng YC, Lee KW, Hsu HH, Chu CH, Tsai FJ, Tsai CH, Chu CY, Liu JY, Kuo WW, Huang CY (2008) Lipopolysaccharide induces cellular hypertrophy through calcineurin/NFAT-3 signaling pathway in H9c2 myocardiac cells. Mol Cell Biochem 313:167–178. doi:10.1007/s11010-008-9754-0

    Article  CAS  PubMed  Google Scholar 

  23. Coccaro E, Mraiche F, Malo M, Vandertol-Vanier H, Bullis B, Robertson M, Fliegel L (2007) Expression and characterization of the Na+/H+ exchanger in the mammalian myocardium. Mol Cell Biochem 302:145–155. doi:10.1007/s11010-007-9436-3

    Article  CAS  PubMed  Google Scholar 

  24. Karki P, Coccaro E, Fliegel L (2010) Sustained intracellular acidosis activates the myocardial Na(+)/H(+) exchanger independent of amino acid Ser(703) and p90(rsk). Biochim Biophys Acta 1798:1565–1576. doi:10.1016/j.bbamem.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  25. Voelkl J, Lin Y, Alesutan I, Ahmed M, Pasham V, Mia S, Gu S, Feger M, Saxena A, Metzler B, Kuhl D, Pichler B, Lang F (2012) Sgk1 sensitivity of Na+/H+ exchanger activity and cardiac remodeling following pressure overload. Basic Res Cardiol C7–236(107):1–15. doi:10.1007/s00395-011-0236-2

    Google Scholar 

  26. Kilic A, Rajapurohitam V, Sandberg SM, Zeidan A, Hunter JC, Said Faruq N, Lee CY, Burnett JC Jr, Karmazyn M (2010) A novel chimeric natriuretic peptide reduces cardiomyocyte hypertrophy through the NHE-1-calcineurin pathway. Cardiovasc Res 88:434–442. doi:10.1093/cvr/cvq254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600. doi:10.1038/nrm1983

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S (2008) Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res 103:891–899. doi:10.1161/CIRCRESAHA.108.175141

    Article  CAS  PubMed  Google Scholar 

  29. Watkins SJ, Borthwick GM, Arthur HM (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim 47:125–131. doi:10.1007/s11626-010-9368-1

    Article  CAS  PubMed  Google Scholar 

  30. Engelhardt S, Hein L, Keller U, Klambt K, Lohse MJ (2002) Inhibition of Na(+)-H(+) exchange prevents hypertrophy, fibrosis, and heart failure in beta(1)-adrenergic receptor transgenic mice. Circ Res 90:814–819

    Article  CAS  PubMed  Google Scholar 

  31. Bueno OF, Wilkins BJ, Tymitz KM, Glascock BJ, Kimball TF, Lorenz JN, Molkentin JD (2002) Impaired cardiac hypertrophic response in Calcineurin Abeta -deficient mice. Proc Natl Acad Sci U S A 99:4586–4591. doi:10.1073/pnas.072647999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pikkarainen S, Tokola H, Kerkela R, Ruskoaho H (2004) GATA transcription factors in the developing and adult heart. Cardiovasc Res 63:196–207. doi:10.1016/j.cardiores.2004.03.025

    Article  CAS  PubMed  Google Scholar 

  33. Diedrichs H, Chi M, Boelck B, Mehlhorn U, Schwinger RH (2004) Increased regulatory activity of the calcineurin/NFAT pathway in human heart failure. Eur J Heart Fail 6:3–9. doi:10.1016/j.ejheart.2003.07.007

    Article  CAS  PubMed  Google Scholar 

  34. Li T, Liu Z, Hu X, Ma K, Zhou C (2012) Involvement of ERK-RSK cascade in phenylephrine-induced phosphorylation of GATA4. Biochim Biophys Acta 1823:582–592. doi:10.1016/j.bbamcr.2011.12.009

    Article  CAS  PubMed  Google Scholar 

  35. Maillet M, Davis J, Auger-Messier M, York A, Osinska H, Piquereau J, Lorenz JN, Robbins J, Ventura-Clapier R, Molkentin JD (2010) Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function. J Biol Chem 285:6716–6724. doi:10.1074/jbc.M109.056143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW 2nd, Kitsis RN, Molkentin JD (2000) Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: an apoptosis-independent model of dilated heart failure. Circ Res 86:255–263

    Article  PubMed  Google Scholar 

  37. Waller AH, Sanchez-Ross M, Kaluski E, Klapholz M (2010) Osteopontin in cardiovascular disease: a potential therapeutic target. Cardiol Rev 18:125–131. doi:10.1097/CRD.0b013e3181cfb646

    Article  PubMed  Google Scholar 

  38. Sodek J, Ganss B, McKee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11:279–303. doi:10.1177/10454411000110030101

    Article  CAS  PubMed  Google Scholar 

  39. Kazanecki CC, Uzwiak DJ, Denhardt DT (2007) Control of osteopontin signaling and function by post-translational phosphorylation and protein folding. J Cell Biochem 102:912–924. doi:10.1002/jcb.21558

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Priorities Research Program (NPRP 5-330-3-090) grant provided by the Qatar National Research Fund (Doha, Qatar). Mrs. Amy Barr (University of Alberta, Edmonton, Alberta, CA) was generous enough to assist in the preparation, precipitation, purification, and determination of viral titer of the green fluorescent protein (GFP), active NHE1 and OPN adenoviruses.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Mraiche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mlih, M., Abdulrahman, N., Gadeau, AP. et al. Na+/H+ exchanger isoform 1 induced osteopontin expression in cardiomyocytes involves NFAT3/Gata4. Mol Cell Biochem 404, 211–220 (2015). https://doi.org/10.1007/s11010-015-2380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2380-8

Keywords

Navigation