Skip to main content

Advertisement

Log in

Clopidogrel reduces apoptosis and promotes proliferation of human vascular endothelial cells induced by palmitic acid via suppression of the long non-coding RNA HIF1A-AS1 in vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is recognized as a major and increasing health problem affected older subjects in China, and clopidogrel has been widely used for treatment of CVD patients such as atherosclerosis, myocardial infarction, and myocardial ischaemia–reperfusion damage. However, the molecular mechanisms of clopidogrel for treatment of CVD are only partially understood. This study investigated the effects of clopidogrel on palmitic acid-induced damage of human vascular endothelial cells (HUVECs), and the molecular mechanisms of LncRNA HIF1A-AS1 in regulating the proliferation and apoptosis of HUVECs in vitro. We firstly established a damage model of HUVECs through palmitic acid (PA) treatment. And the effect of clopidogrel reducing PA-induced apoptosis of HUVECs was observed by the flow cytometric measurement. To further understand the molecular mechanism of clopidogrel rescues PA-induced apoptosis, we used human LncRNA PCR array to compare the LncRNA expression profile difference between clopidogrel-treated cells and control cells. The expression of LncRNA HIF 1 alpha-antisense RNA 1 (HIF1A-AS1) was significantly altered in clopidogrel-treated cells. We further proved that suppression of HIF1A-AS1 by siRNA reduce PA-induced apoptosis and promote proliferation of HUVECs. Furthermore, we also demonstrated inhibition apoptosis effect by HIF1A-AS1 is related to mitochondrial apoptosis pathway. Hence, our results suggest that clopidogrel rescues apoptosis and promotes proliferation of PA-induced damage model of HUVECs through inhibiting the mediator LncRNA HIF1A-AS1. These findings indicate that LncRNA HIF1A-AS1 may play an important role in the pathogenesis of CVD, and provide a novel molecular mechanism of clopidogrel for treatment of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tietge UJ (2014) Hyperlipidemia and cardiovascular disease: inflammation, dyslipidemia, and atherosclerosis. Curr Opin Lipidol 25(1):94–95

    Article  CAS  PubMed  Google Scholar 

  2. Nelson RH (2013) Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 40(1):195–211

    Article  PubMed Central  PubMed  Google Scholar 

  3. Wu Y, Liu X, Li X, Li Y, Zhao L, Chen Z, Li Y, Rao X, Zhou B, Detrano R (2006) Estimation of 10-year risk of fatal and nonfatal ischemic cardiovascular diseases in Chinese adults. Circulation 114(21):2217–2225

    Article  PubMed  Google Scholar 

  4. Szondy Z (1997) Methylprednisolone and 2-chloroadenosine induce DNA fragmentation at different stages of human T-lymphocyte development. Immunol Lett 58(1):59–65

    Article  CAS  PubMed  Google Scholar 

  5. Epstein FH, Ross R (1999) Atherosclerosis—an inflammatory disease. New Engl J Med 340(2):115–126

    Article  Google Scholar 

  6. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241. doi:10.1038/35025203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kubo SH, Rector TS, Bank AJ, Williams RE, Heifetz SM (1991) Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 84(4):1589–1596

    Article  CAS  PubMed  Google Scholar 

  8. Loomans CJ, De Koning EJ, Staal FJ, Rabelink TJ, Zonneveld A-JV (2005) Endothelial progenitor cell dysfunction in type 1 diabetes: another consequence of oxidative stress? Antioxid Redox Signal 7(11–12):1468–1475

    Article  CAS  PubMed  Google Scholar 

  9. Arndt H, Smith CW, Granger DN (1993) Leukocyte-endothelial cell adhesion in spontaneously hypertensive and normotensive rats. Hypertension 21(5):667–673

    Article  CAS  PubMed  Google Scholar 

  10. Yamada S, Ding Y, Tanimoto A, Wang K-Y, Guo X, Li Z, Tasaki T, Nabesima A, Murata Y, Shimajiri S (2011) Apoptosis signal-regulating kinase 1 deficiency accelerates hyperlipidemia-induced atheromatous plaques via suppression of macrophage apoptosis. Arterioscler Thromb Vasc Biol 31(7):1555–1564

    Article  CAS  PubMed  Google Scholar 

  11. Izumi Y, Kim S, Yoshiyama M, Izumiya Y, Yoshida K, Matsuzawa A, Koyama H, Nishizawa Y, Ichijo H, Yoshikawa J (2003) Activation of apoptosis signal-regulating kinase 1 in injured artery and its critical role in neointimal hyperplasia. Circulation 108(22):2812–2818

    Article  CAS  PubMed  Google Scholar 

  12. Xie H-G, Zou J-J, Hu Z-Y, Zhang J-J, Ye F, Chen S-L (2011) Individual variability in the disposition of and response to clopidogrel: pharmacogenomics and beyond. Pharmacol Ther 129(3):267–289

    Article  CAS  PubMed  Google Scholar 

  13. Barker CM, Anderson HV (2009) Acute coronary syndromes: don’t bypass the clopidogrel. J Am Coll Cardiol 53(21):1973–1974. doi:10.1016/j.jacc.2009.02.029

    Article  PubMed  Google Scholar 

  14. Zhu T, Xu Y, Dong B, Zhang J, Wei Z, Xu Y, Yao Y (2011) β-elemene inhibits proliferation of human glioblastoma cells through the activation of glia maturation factor β and induces sensitization to cisplatin. Oncol Rep 26(2):405–413

    CAS  PubMed  Google Scholar 

  15. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(suppl 1):R17–R29

    Article  CAS  PubMed  Google Scholar 

  16. Arase M, Horiguchi K, Ehata S, Morikawa M, Tsutsumi S, Aburatani H, Miyazono K, Koinuma D (2014) Transforming growth factor-β–induced lncRNA-Smad7 inhibits apoptosis of mouse breast cancer JygMC (A) cells. Cancer Sci 105(8):974–982

    Article  CAS  PubMed  Google Scholar 

  17. Wang K, Long B, Zhou L-Y, Liu F, Zhou Q-Y, Liu C-Y, Fan Y-Y, Li P-F (2014) CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun 5:3596

    PubMed  Google Scholar 

  18. Yang Y, Li H, Hou S, Hu B, Liu J, Wang J (2013) The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One 8(5):e65309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  20. Campara MT, Sijaric-Voloder S, Denislic M, Tupkovic E, Vranic JD, Alajbegovic A (2014) Hyperlipidemia as a risk factor for persons in specific professions. Mater Socio-med 26(1):17

    Article  Google Scholar 

  21. Huang Q, Qin L, Dai S, Zhang H, Pasula S, Zhou H, Chen H, Min W (2013) AIP1 suppresses atherosclerosis by limiting hyperlipidemia-induced inflammation and vascular endothelial dysfunction. Arterioscler Thromb Vasc Biol 33(4):795–804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Alberici LC, Paim BA, Zecchin KG, Mirandola SR, Pestana CR, Castilho RF, Vercesi AE, Oliveira HC (2013) Activation of the mitochondrial ATP-sensitive K + channel reduces apoptosis of spleen mononuclear cells induced by hyperlipidemia. Lipids Health Dis 12:87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chrétien M (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci 100(3):928–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ermak N, Lacour B, Drüeke TB, Vicca S (2008) Role of reactive oxygen species and Bax in oxidized low density lipoprotein-induced apoptosis of human monocytes. Atherosclerosis 200(2):247–256

    Article  CAS  PubMed  Google Scholar 

  25. Mauro M, Zlatopolskiy A, Raife TJ, Laurence J (2004) Thienopyridine-linked thrombotic microangiopathy: association with endothelial cell apoptosis and activation of MAP kinase signalling cascades. Br J Haematol 124(2):200–210

    Article  CAS  PubMed  Google Scholar 

  26. Yalcin R, Erkan A, Ergun MA, Yurtcu E (2004) The effect of clopidogrel on apoptosis-an in vivo study. Cell Biol Int 28:477–481

    Article  CAS  PubMed  Google Scholar 

  27. Wang S, Zhang X, Yuan Y, Tan M, Zhang L, Xue X, Yan Y, Han L, Xu Z (2014) BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro. Eur J Cardio-Thorac Surg 47(3):439–446

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Associated Project of Yunnan Province Science & Technology Department and Kunming Medical University Basic Research for Application (Code: 2013FB148).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingqiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, L., Li, H. et al. Clopidogrel reduces apoptosis and promotes proliferation of human vascular endothelial cells induced by palmitic acid via suppression of the long non-coding RNA HIF1A-AS1 in vitro. Mol Cell Biochem 404, 203–210 (2015). https://doi.org/10.1007/s11010-015-2379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2379-1

Keywords

Navigation