Skip to main content
Log in

Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1)

Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) play a key role in matrix remodelling and thus invasion and metastasis. Extracellular galectin-3 has been shown to induce MMP9 secretion. Here, we demonstrate that galectin-3 induces MMP9 at transcript level and it is dependent on the surface levels of poly-N-acetyllactosamine (polyLacNAc). By employing signalling pathway inhibitors, MMP9 expression was shown to be induced via p38 MAP-kinase pathway. Using clones of melanoma cells expressing shRNAs to lysosome-associated membrane protein-1 (LAMP1), a major carrier of polyLacNAc, surface LAMP1 was demonstrated to serve as one of the key mediators of galectin-3-induced MMP9 expression via p38 MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  PubMed  Google Scholar 

  2. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Poste G, Nicolson GL (1980) Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci USA 77:399–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. McGary EC, Lev DC, Bar-Eli M (2002) Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol Ther 1:459–465

    Article  PubMed  Google Scholar 

  5. Hiraizumi S, Takasaki S, Ohuchi N, Harada Y, Nose M, Mori S, Kobata A (1992) Altered glycosylation of membrane glycoproteins associated with human mammary carcinoma. Jpn J Cancer Res 83:1063–1072

    Article  CAS  PubMed  Google Scholar 

  6. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS (1987) Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236:582–585

    Article  CAS  PubMed  Google Scholar 

  7. Dennis JW, Granovsky M, Warren CE (1999) Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1473:21–34

    Article  CAS  PubMed  Google Scholar 

  8. Handerson T, Pawelek JM (2003) Beta1,6-branched oligosaccharides and coarse vesicles: a common, pervasive phenotype in melanoma and other human cancers. Cancer Res 63:5363–5369

    CAS  PubMed  Google Scholar 

  9. Krishnan V, Bane SM, Kawle PD, Naresh KN, Kalraiya RD (2005) Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis 22:11–24

    Article  CAS  PubMed  Google Scholar 

  10. Dange MC, Srinivasan N, More SK, Bane SM, Upadhya A, Ingle AD, Gude RP, Mukhopadhyaya R, Kalraiya RD (2014) Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells. Clin Exp Metastasis 31:661–673

    Article  CAS  PubMed  Google Scholar 

  11. Srinivasan N, Bane SM, Ahire SD, Ingle AD, Kalraiya RD (2009) Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen-Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3. Glycoconj J 26:445–456

    Article  CAS  PubMed  Google Scholar 

  12. Agarwal AK, Gude RP, Kalraiya RD (2014) Regulation of melanoma metastasis to lungs by cell surface Lysosome Associated Membrane Protein-1 (LAMP1) via galectin-3. Biochem Biophys Res Commun 449:332–337

    Article  CAS  PubMed  Google Scholar 

  13. Reddy BV, Kalraiya RD (2006) Sialilated beta1,6 branched N-oligosaccharides modulate adhesion, chemotaxis and motility of melanoma cells: effect on invasion and spontaneous metastasis properties. Biochim Biophys Acta 1760:1393–1402

    Article  CAS  PubMed  Google Scholar 

  14. Hu X, Beeton C (2010) Detection of functional matrix metalloproteinases by zymography. J Vis Exp 45:2445

    PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  16. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27

    Article  CAS  PubMed  Google Scholar 

  17. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672

    Article  CAS  PubMed  Google Scholar 

  18. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  CAS  PubMed  Google Scholar 

  19. Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209:139–151

    Article  CAS  PubMed  Google Scholar 

  20. Vincenti MP, Brinckerhoff CE (2007) Signal transduction and cell-type specific regulation of matrix metalloproteinase gene expression: can MMPs be good for you? J Cell Physiol 213:355–364

    Article  CAS  PubMed  Google Scholar 

  21. Elola MT, Wolfenstein-Todel C, Troncoso MF, Vasta GR, Rabinovich GA (2007) Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci 64:1679–1700

    Article  CAS  PubMed  Google Scholar 

  22. Nangia-Makker P, Balan V, Raz A (2008) Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron 1:43–51

    Article  PubMed Central  PubMed  Google Scholar 

  23. Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling MP, Pavao MS (2014) Extracellular galectin-3 in tumor progression and metastasis. Front Oncol 4:138

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ranjan A, Bane SM, Kalraiya RD (2014) Glycosylation of the laminin receptor (alpha3beta1) regulates its association with tetraspanin CD151: impact on cell spreading, motility, degradation and invasion of basement membrane by tumor cells. Exp Cell Res 322:249–264

    Article  CAS  PubMed  Google Scholar 

  25. Sen T, Dutta A, Maity G, Chatterjee A (2010) Fibronectin induces matrix metalloproteinase-9 (MMP-9) in human laryngeal carcinoma cells by involving multiple signalling pathways. Biochimie 92:1422–1434

    Article  CAS  PubMed  Google Scholar 

  26. Mauris J, Woodward AM, Cao Z, Panjwani N, Argueso P (2014) Molecular basis for MMP9 induction and disruption of epithelial cell-cell contacts by galectin-3. J Cell Sci 127(14):3141–3148

    Article  CAS  PubMed  Google Scholar 

  27. Chen YJ, Wei YY, Chen HT, Fong YC, Hsu CJ, Tsai CH, Hsu HC, Liu SH, Tang CH (2009) Osteopontin increases migration and MMP-9 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells. J Cell Physiol 221:98–108

    Article  CAS  PubMed  Google Scholar 

  28. Zhou D (2003) Why are glycoproteins modified by poly-N-acetyllactosamine glyco-conjugates? Curr Protein Pept Sci 4:1–9

    Article  PubMed  Google Scholar 

  29. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE, Yagi F, Kasai K (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta 1572:232–254

    Article  CAS  PubMed  Google Scholar 

  30. Fukuda M (1991) Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking. J Biol Chem 266:21327–21330

    CAS  PubMed  Google Scholar 

  31. Carlsson SR, Fukuda M (1989) Structure of human lysosomal membrane glycoprotein 1. Assignment of disulfide bonds and visualization of its domain arrangement. J Biol Chem 264:20526–20531

    CAS  PubMed  Google Scholar 

  32. Saitoh O, Wang WC, Lotan R, Fukuda M (1992) Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem 267:5700–5711

    CAS  PubMed  Google Scholar 

  33. Agarwal AK, Kalraiya RD (2014) Glycosylation regulates the expression of Lysosome Associated Membrane Protein-1 (LAMP1) on the cell surface. J Biosci Tech 5:556–563

    Google Scholar 

  34. Inohara H, Raz A (1994) Identification of human melanoma cellular and secreted ligands for galectin-3. Biochem Biophys Res Commun 201:1366–1375

    Article  CAS  PubMed  Google Scholar 

  35. Sarafian V, Jadot M, Foidart JM, Letesson JJ, Van den Brule F, Castronovo V, Wattiaux R, Coninck SW (1998) Expression of Lamp-1 and Lamp-2 and their interactions with galectin-3 in human tumor cells. Int J Cancer 75:105–111

    Article  CAS  PubMed  Google Scholar 

  36. Federici C, Brambilla D, Lozupone F, Matarrese P, de Milito A, Lugini L, Iessi E, Cecchetti S, Marino M, Perdicchio M, Logozzi M, Spada M, Malorni W, Fais S (2009) Pleiotropic function of ezrin in human metastatic melanomas. Int J Cancer 124:2804–2812

    Article  CAS  PubMed  Google Scholar 

  37. Brambilla D, Fais S (2009) The Janus-faced role of ezrin in “linking” cells to either normal or metastatic phenotype. Int J Cancer 125:2239–2245

    Article  CAS  PubMed  Google Scholar 

  38. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006) Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodelling of the actin cytoskeleton. Cancer Cell 9:261–272

    Article  CAS  PubMed  Google Scholar 

  39. Boscher C, Nabi IR (2013) Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signalling mediates the EGF motogenic response in mammary cancer cells. Mol Biol Cell 24:2134–2145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Garner OB, Baum LG (2008) Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 36:1472–1477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Goetz JG, Joshi B, Lajoie P, Strugnell SS, Scudamore T, Kojic LD, Nabi IR (2008) Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol 180:1261–1275

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Lajoie P, Partridge EA, Guay G, Goetz JG, Pawling J, Lagana A, Joshi B, Dennis JW, Nabi IR (2007) Plasma membrane domain organization regulates EGFR signalling in tumor cells. J Cell Biol 179:341–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306:120–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (DBT), Government of India (Sanction No. BT/PR3201/MED/30/643/2011). We thank Dr. Hakon Leffler, Lund University, Sweden, for the expression vector for rhGalectin-3, National Centre for Cell Science, Pune, India for the melanoma cell line and Mr. D. S. Chavan and Mr. A. M. Pawar for technical help. We acknowledge the Council for Scientific and Industrial Research (CSIR) and DBT for providing fellowship to Mr. MC Dange and Mr. AK Agarwal from CSIR and ACTREC, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv D. Kalraiya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 139 kb)

Supplementary material 2 (JPG 1018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dange, M.C., Agarwal, A.K. & Kalraiya, R.D. Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Mol Cell Biochem 404, 79–86 (2015). https://doi.org/10.1007/s11010-015-2367-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2367-5

Keywords

Navigation