Skip to main content
Log in

Inhibiting (pro)renin receptor-mediated p38 MAPK signaling decreases hypoxia/reoxygenation-induced apoptosis in H9c2 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The (pro)renin receptor is a new molecular member of the renin–angiotensin system and participates in regulating many physiological and pathological processes. However, the role of (pro)renin receptor-mediated signaling pathways in myocardial ischemic/reperfusion injury remains unclear. In this study, we hypothesized that p38 mitogen-activated protein kinase (MAPK) signaling pathway activation by the (pro)renin receptor had effects on myocardial apoptosis induced by ischemia/reperfusion. This analysis was performed using a hypoxia/reoxygenation model in H9c2 cells to mimic ischemia/reperfusion injury. The H9c2 rat cardiomyocyte cell line was subjected to 2 h of hypoxia followed by 6 h of reoxygenation. The (pro)renin receptor, caspase 3, and phosphorylated p38 MAPK protein expression levels were analyzed by Western blot. After 2 h of hypoxia followed by 6 h of reoxygenation, apoptosis increased in H9c2 cells; the (pro)renin receptor, caspase 3, and phosphorylated p38 MAPK protein expressions were upregulated. siRNA silencing of the (pro)renin receptor significantly decreased p38 MAPK phosphorylation. siRNA silencing of the (pro)renin receptor and treatment with the p38MAPK inhibitor SB203580 significantly decreased the hypoxia/reoxygenation-induced apoptosis and caspase 3 protein expression in H9c2 cells. Furthermore, we found that the role of the (pro)renin receptor was independent of angiotensin II (Ang II). Thus, we concluded that (pro)renin receptor activation could trigger hypoxia/reoxygenation-induced apoptosis in H9c2 cells, partially through the p38 MAPK/caspase 3 signaling pathway, independent of Ang II. Therefore, this study may provide new therapeutic targets for myocardial ischemic/reperfusion injury prevention, and further in vivo studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu B, Sun Y, Sievers RE, Browne AE, Pulukurthy S, Sudhir K, Lee RJ, Chou TM, Chatterjee K, Parmley WW (2000) Comparative effects of pretreatment with captopril and losartan on cardiovascular protection in a rat model of ischemia-reperfusion. J Am Coll Cardiol 35:787–795

    Article  CAS  PubMed  Google Scholar 

  2. Yahiro E, Ideishi M, Wang LX, Urata H, Kumagai K, Arakawa K, Saku K (2003) Reperfusion-induced arrhythmias are suppressed by inhibition of the angiotensin II type 1 receptor. Cardiology 99:61–67

    Article  CAS  PubMed  Google Scholar 

  3. Dogan R, Farsak B, Isbir S, Sarigul A, Tuncer M, Kilinc K (2001) Protective effect of lisinopril against ischemia-reperfusion injury in isolated guinea pig hearts. J Cardiovasc Surg (Torino) 42:43–48

    CAS  Google Scholar 

  4. Huang J, Siragy HM (2009) Glucose promotes the production of interleukine-1beta and cyclooxygenase-2 in mesangial cells via enhanced (Pro)renin receptor expression. Endocrinology 150:5557–5565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W (2006) Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 69:105–113

    Article  CAS  PubMed  Google Scholar 

  6. Saris JJ, t Hoen PA, Garrelds IM, Dekkers DH, den Dunnen JT, Lamers JM, Jan Danser AH (2006) Prorenin induces intracellular signaling in cardiomyocytes independently of angiotensin II. Hypertension 48:564–571

    Article  CAS  PubMed  Google Scholar 

  7. Susic D, Zhou X, Frohlich ED, Lippton H, Knight M (2008) Cardiovascular effects of prorenin blockade in genetically spontaneously hypertensive rats on normal and high-salt diet. Am J Physiol Heart Circ Physiol 295:H1117–H1121

    Article  CAS  PubMed  Google Scholar 

  8. Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M, Suzuki F, Nakagawa T, Nishiyama A, Inagami T, Hayashi M (2006) Nonproteolytic activation of prorenin contributes to development of cardiac fibrosis in genetic hypertension. Hypertension 47:894–900

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi H, Ichihara A, Kaneshiro Y, Inomata K, Sakoda M, Takemitsu T, Nishiyama A, Itoh H (2007) Regression of nephropathy developed in diabetes by (Pro)renin receptor blockade. J Am Soc Nephrol 18:2054–2061

    Article  CAS  PubMed  Google Scholar 

  10. Kinouchi K, Ichihara A, Sano M, Sun-Wada GH, Wada Y, Kurauchi-Mito A, Bokuda K, Narita T, Oshima Y, Sakoda M, Tamai Y, Sato H, Fukuda K, Itoh H (2010) The (pro)renin receptor/ATP6AP2 is essential for vacuolar H+-ATPase assembly in murine cardiomyocytes. Circ Res 107:30–34

    Article  CAS  PubMed  Google Scholar 

  11. Bernhard SM, Seidel K, Schmitz J, Klare S, Kirsch S, Schrezenmeier E, Zaade D, Meyborg H, Goldin-Lang P, Stawowy P, Zollmann FS, Unger T, Funke-Kaiser H (2012) The (pro)renin receptor ((P)RR) can act as a repressor of Wnt signalling. Biochem Pharmacol 84:1643–1650

    Article  CAS  PubMed  Google Scholar 

  12. Li DY, Tao L, Liu H, Christopher TA, Lopez BL, Ma XL (2006) Role of ERK1/2 in the anti-apoptotic and cardioprotective effects of nitric oxide after myocardial ischemia and reperfusion. Apoptosis 11:923–930

    Article  CAS  PubMed  Google Scholar 

  13. Engelbrecht AM, Niesler C, Page C, Lochner A (2004) p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Res Cardiol 99:338–350

    Article  CAS  PubMed  Google Scholar 

  14. Ferrandi C, Ballerio R, Gaillard P, Giachetti C, Carboni S, Vitte PA, Gotteland JP, Cirillo R (2004) Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br J Pharmacol 142:953–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  CAS  PubMed  Google Scholar 

  16. Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA (1999) Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 107:489–506

    Article  CAS  PubMed  Google Scholar 

  17. Liu FY, Liu XY, Zhang LJ, Cheng YP, Jiang YN (2014) Binding of prorenin to (pro)renin receptor induces the proliferation of human umbilical artery smooth muscle cells via ROS generation and ERK1/2 activation. J Renin Angiotensin Aldosterone Syst 15:99–108

    Article  PubMed  Google Scholar 

  18. Liao H, Gong J, Zhang W, Guo X (2012) Valsartan inhibits angiotensin II-induced proliferation of vascular smooth muscle cells via regulating the expression of mitofusin 2. J Huazhong Univ Sci Technol Med Sci 32:31–35

    Article  CAS  PubMed  Google Scholar 

  19. Feldt S, Batenburg WW, Mazak I, Maschke U, Wellner M, Kvakan H, Dechend R, Fiebeler A, Burckle C, Contrepas A, Jan Danser AH, Bader M, Nguyen G, Luft FC, Muller DN (2008) Prorenin and renin-induced extracellular signal-regulated kinase 1/2 activation in monocytes is not blocked by aliskiren or the handle-region peptide. Hypertension 51:682–688

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Investig 109:1417–1427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mahmud H, Candido WM, van Genne L, Vreeswijk-Baudoin I, Yu H, van de Sluis B, van Deursen J, van Gilst WH, Sillje HH, de Boer RA (2014) Cardiac function and architecture are maintained in a model of cardio restricted overexpression of the prorenin-renin receptor. PLoS One 9:e89929

    Article  PubMed Central  PubMed  Google Scholar 

  22. Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269:30761–30764

    CAS  PubMed  Google Scholar 

  23. Salvesen GS (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 9:3–5

    Article  PubMed  Google Scholar 

  24. Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ, Los M (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46:497–510

    Article  CAS  PubMed  Google Scholar 

  25. Yang B, Ye D, Wang Y (2013) Caspase-3 as a therapeutic target for heart failure. Expert Opin Ther Targets 17:255–263

    Article  CAS  PubMed  Google Scholar 

  26. Black SC, Huang JQ, Rezaiefar P, Radinovic S, Eberhart A, Nicholson DW, Rodger IW (1998) Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat. J Mol Cell Cardiol 30:733–742

    Article  CAS  PubMed  Google Scholar 

  27. Mandlekar S, Kong AN (2001) Mechanisms of tamoxifen-induced apoptosis. Apoptosis 6:469–477

    Article  CAS  PubMed  Google Scholar 

  28. Yu G, Peng T, Feng Q, Tyml K (2007) Abrupt reoxygenation of microvascular endothelial cells after hypoxia activates ERK1/2 and JNK1, leading to NADPH oxidase-dependent oxidant production. Microcirculation 14:125–136

    Article  CAS  PubMed  Google Scholar 

  29. Liu AL, Wang XW, Liu AH, Su XW, Jiang WJ, Qiu PX, Yan GM (2009) JNK and p38 were involved in hypoxia and reoxygenation-induced apoptosis of cultured rat cerebellar granule neurons. Exp Toxicol Pathol 61:137–143

    Article  CAS  PubMed  Google Scholar 

  30. Shimada K, Nakamura M, Ishida E, Kishi M, Konishi N (2003) Roles of p38- and c-jun NH2-terminal kinase-mediated pathways in 2-methoxyestradiol-induced p53 induction and apoptosis. Carcinogenesis 24:1067–1075

    Article  CAS  PubMed  Google Scholar 

  31. Sakoda M, Ichihara A, Kaneshiro Y, Takemitsu T, Nakazato Y, Nabi AH, Nakagawa T, Suzuki F, Inagami T, Itoh H (2007) (Pro)renin receptor-mediated activation of mitogen-activated protein kinases in human vascular smooth muscle cells. Hypertens Res 30:1139–1146

    Article  CAS  PubMed  Google Scholar 

  32. Liu FY, Liu XY, Zhang LJ, Cheng YP, Jiang YN (2014) Binding of prorenin to (pro)renin receptor induces the proliferation of human umbilical artery smooth muscle cells via ROS generation and ERK1/2 activation. J. Renin Angiotensin Aldosterone Syst 15:99–108

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflicts of interest to declare.

Funding

This work was supported by the National Natural Science Foundation of China (No. 3027143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, S., Su, D. et al. Inhibiting (pro)renin receptor-mediated p38 MAPK signaling decreases hypoxia/reoxygenation-induced apoptosis in H9c2 cells. Mol Cell Biochem 403, 267–276 (2015). https://doi.org/10.1007/s11010-015-2356-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2356-8

Keywords

Navigation