Skip to main content
Log in

Lipidomic analysis of molecular cardiolipin species in livers exposed to ischemia/reperfusion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Transient hepatic ischemia can cause significant liver injury. A central and early event in ischemia/reperfusion (I/R) injury is the impairment of mitochondria. The phospholipid cardiolipin (CL) is required for efficient mitochondrial function. The aim of this study was to analyze composition, content, and oxidation of CL in dependence of I/R stress. Therefore, we exposed rat livers to 20 min ischemia by interrupting the perfusion with Krebs-Ringer solution in situ. Tissue histology as well as increased activities of LDH, GLDH, and ASAT analysed in the efflux after 50 min reperfusion indicated impairment of the liver. For the analysis of local CL distribution the liver homogenate was separated according to density into 11 fractions. The fractions displayed different contents of CL and citrate synthase peaking at density of about 1.07 g/cm3. Among the fractions, the distribution of molecular CL species significantly differed. I/R caused loss of about 30 % CL and 17 % citrate synthase activity. Further, I/R shifted the CL and citrate synthase activity profile toward lower densities. Oxidized CL was exclusively found in fractions with high CL and citrate synthase content after I/R stress. I/R treatment caused significant changes in the distribution of molecular CL species. Our data demonstrate that I/R causes significant decrease in CL content and increase of oxidized CL that may be of impact for impairment of mitochondrial function by I/R. These results lead to the suggestion that strategies supporting anti-oxidative defence and CL synthesis may be beneficial to reduce I/R injury of the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peralta C, Jiménez-Castro MB, Gracia-Sancho J (2013) Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol 59:1094–1106

    Article  PubMed  Google Scholar 

  2. Abu-Amara M, Yang SY, Tapuria N, Fuller B, Davidson B, Seifalian A (2010) Liver ischemia/reperfusion injury: processes in inflammatory networks—a review. Liver Transplant 16:1016–1032

    Article  Google Scholar 

  3. Selzner N, Rudiger H, Graf R, Clavien PA (2003) Protective strategies against ischemic injury of the liver. Gastroenterology 125:917–936

    Article  CAS  PubMed  Google Scholar 

  4. Castro L, Demicheli V, Tortora V, Radi R (2011) Mitochondrial protein tyrosine nitration. Free Radic Res 45:37–52

    Article  CAS  PubMed  Google Scholar 

  5. Sastre J, Serviddio G, Pereda J, Minana JB, Arduini A, Vendemiale G, Poli G, Pallardo FV, Vina J (2007) Mitochondrial function in liver disease. Front Biosci 12:1200–1209

    Article  CAS  PubMed  Google Scholar 

  6. Mukhopadhyay P, Horváth B, Zsengellėr Z, Bátkai S, Cao Z, Kechrid M, Holovac E, Erdėlyi K, Tanchian G, Liaudet L, Stillman IE, Joseph J, Kalyanaraman B, Pacher P (2012) Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia–reperfusion: therapeutic potential of mitochondrially targeted antioxidants. Free Radic Biol Med 53:1123–1138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lecocq J, Ballou CE (1964) On the structure of cardiolipin. Biochemistry 964:976–980

    Article  Google Scholar 

  8. Mileykovskaya E, Dowhan W (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 1788:2084–2091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Petrosillo G, Matera M, Moro N, Ruggiero FM, Paradies G (2009) Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med 46:88–94

    Article  CAS  PubMed  Google Scholar 

  10. Morin C, Zini R, Tillement JP (2003) Anoxia–reoxygenation-induced cytochrome c and cardiolipin release from rat brain mitochondria. Biochem Biophys Res Commun 307(3):477–482

    Article  CAS  PubMed  Google Scholar 

  11. He Q, Han X (2013) Cardiolipin remodeling in diabetic heart. Chem Phys Lipids S0009–3084(13):00135–00137

    Google Scholar 

  12. Kiebish MA, Han X, Cheng H, Han X, Cheng H, Chuang JH, Seyfried TN (2008) Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 49:2545–2556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hartz JW, Morion RI, Walte MM, Morris HP (1982) Correlation of fatty acyl composition of mitochondrial and microsomal phospolipid with growth rate of rat hepatomas. Lab Investig 46:73–78

    CAS  PubMed  Google Scholar 

  14. Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1:223–232

    Article  CAS  PubMed  Google Scholar 

  15. Wiswedel I, Gardemann A, Storch A, Peter D, Schild L (2010) Degradation of phospholipids by oxidative stress–exceptional significance of cardiolipin. Free Radic Res 44:135–145

    Article  CAS  PubMed  Google Scholar 

  16. Lackner LL (2014) Shaping the dynamic mitochondrial network. BMC Biol 27(12):35

    Article  Google Scholar 

  17. Struchkov VA, Strazhevskaya NB, Zhdanov RI (2002) Specific natural DNA-bound lipids in post-genome era. The lipid conception of chromatin organization. Bioelectrochemistry 56:195–198

    Article  CAS  PubMed  Google Scholar 

  18. Möllering H, Gruber W (1966) Determination of citrate with citrate lyase. Anal Biochem 17:369–376

    Article  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  20. Gulten DC, Cort A, Yucel G, Demir N, Zzturk S, Elpek GQ, Savas B, Aslan M (2010) Effect of astaxanthin on hepatocellular injury following ischemia/reperfusion. Toxicology 267:147–153

    Article  Google Scholar 

  21. Giovanardi RO, Rhoden EL, Cerski CT, Salvador M, Kalil AN (2009) Ischemic preconditioning protects the pig liver by preserving the mitochondrial structure and downregulating caspase-3 activity. J Investig Surg 22:88–97

    Article  Google Scholar 

  22. Nastos C, Kalimeris K, Papoutsidakis N, Tasoulis MK, Lykoudis PM, Theodoraki K, Nastou D, Smyrniotis V, Arkadopoulos N (2014) Global consequences of liver ischemia/reperfusion injury. Oxid Med Cell Longev 2014:906965 (Epub 2014 Apr 1)

    Article  PubMed Central  PubMed  Google Scholar 

  23. Jaeschke H, Woolbright BL (2012) Current strategies to minimize hepatic ischemia–reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando) 26:103–114

    Article  Google Scholar 

  24. Serviddio G, Bellanti F, Sastre J, Vendemiale G, Altomare E (2010) Targeting mitochondria: a new promising approach for the treatment of liver diseases. Curr Med Chem 17:2325–2337

    Article  CAS  PubMed  Google Scholar 

  25. Pediaditakis P, Kim JS, He L, Zhang X, Graves LM, Lemasters JJ (2010) Inhibition of the mitochondrial permeability transition by protein kinase A in rat liver mitochondria and hepatocytes. Biochem J 431:411–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Schlame M, Kelley RI, Feigenbaum A, Towbin JA, Heerdt PM, Schieble T, Wanders RJ, DiMauro S, Blanck TJ (2003) Phospholipid abnormalities in children with Barth syndrome. J Am Coll Cardiol 42:1994–1999

    Article  CAS  PubMed  Google Scholar 

  27. Martens JC, Keilhoff G, Gardemann A, Schild L (2014) Oxidation of cardiolipin is involved in functional impairment and disintegration of liver mitochondria by hypoxia/reoxygenation in the presence of increased Ca(2+) concentrations. Mol Cell Biochem 394:119–127

    Article  CAS  PubMed  Google Scholar 

  28. Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2001) Reactive oxygen species generated by the mitochondrial respiratory chain affect the complex III activity via cardiolipin peroxidation in beef-heart submitochondrial particles. Mitochondrion 1:151–159

    Article  CAS  PubMed  Google Scholar 

  29. Struchkov VA, Strazhevskaya NB, Zhdanov RI (2002) Specific natural DNA-bound lipids in post-genome era. The lipid conception of chromatin organization. Bioelectrochemistry 56:195–198

    Article  CAS  PubMed  Google Scholar 

  30. Elias-Miró M, Jiménez-Castro MB, Rodés J, Peralta C (2013) Current knowledge on oxidative stress in hepatic ischemia/reperfusion. Free Radic Res 47:555–568

    Article  PubMed  Google Scholar 

  31. Reinheckel T, Wiswedel I, Augustin W, Schild L (1997) Short-term impairment of energy production in isolated rat liver mitochondria by hypoxia/reoxygenation: involvement of oxidative protein modification. Biochem J 328:205–210

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Prof. Siegfried Kropf for the statistical analysis as well as Mrs. Daniela Peter, Mrs. Silke Niemann, Mrs. Elke Wölfel, and Mrs. Leona Bück for excellent technical assistance.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Schild.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martens, JC., Keilhoff, G., Halangk, W. et al. Lipidomic analysis of molecular cardiolipin species in livers exposed to ischemia/reperfusion. Mol Cell Biochem 400, 253–263 (2015). https://doi.org/10.1007/s11010-014-2282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2282-1

Keywords

Navigation