Skip to main content
Log in

Cross-talk between p38MAPK and Giα in regulating cPLA2 activity by ET-1 in pulmonary smooth muscle cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Endothelin-1 (ET-1) is known as the most potent vasoconstrictor yet described. Infusion of ET-1 into isolated rabbit lung has been shown to cause pulmonary vasoconstriction with the involvement of arachidonic acid metabolites. Given the potency of arachidonic acid metabolites, the activity of phospholipase A2 must be tightly regulated. Herein, we determined the mechanisms by which ET-1 stimulates cPLA2 activity during ET-1 stimulation of bovine pulmonary artery smooth muscle cells. We demonstrated that (i) treatment of bovine pulmonary artery smooth muscle cells with ET-1 stimulates cPLA2 activity in the cell membrane; (ii) ET-1 caused increase in O ·−2 production occurs via NADPH oxidase-dependent mechanism; (iii) ET-1-stimulated NADPH oxidase activity is markedly prevented upon pretreatment with PKC-ζ inhibitor, indicating that PKC-ζ plays a prominent role in this scenario; (iv) ET-1-induced NADPH oxidase-derived O ·−2 stimulates an aprotinin sensitive protease activity due to prominent increase in [Ca2+]i; (v) the aprotinin sensitive protease plays a pivotal role in activating PKC-α, which in turn phosphorylates p38MAPK and subsequently Giα leading to the activation of cPLA2. Taken together, we suggest that cross-talk between p38MAPK and Giα with the involvement of PKC-ζ, NADPH oxidase-derived O ·−2 , [Ca2+]i, aprotinin-sensitive protease and PKC-α play a pivotal role for full activation of cPLA2 during ET-1 stimulation of pulmonary artery smooth muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

cPLA2 :

Cytosolic phospholipase A2

ET-1:

Endothelin-1

Giα:

α-Subunit of the inhibitory G protein

[Ca2+]i :

Intracellular Ca2+

MAPK:

Mitogen activated protein kinase

PKC:

Protein kinase C

PLC:

Phospholipase C

O ·−2 :

Superoxide anion

References

  1. Deuchar GA, Docherty A, MacLean MR, Hicks MN (2002) Pulmonary hypertension secondary to left ventricular dysfunction: the role of nitric oxide and endothelin-1 in the control of pulmonary vascular tone. Br J Pharmacol 35:1060–1068

    Article  Google Scholar 

  2. Lueddeckens G, Bigl H, Sperling J, Becker K, Braquet P, Förster W (1993) Importance of secondary TxA2 release in mediating of endothelin-1 induced bronchoconstriction and vasopressin in the guinea-pig. Prostaglandins Leukot Essent Fatty Acids 48:261–263

    Article  CAS  PubMed  Google Scholar 

  3. Howarth SR, Vallance P, Wilson CA (1995) Role of thromboxane A2 in the vasoconstrictor response to endothelin-1, angiotensin II and 5-hydroxytryptamine in human placental vessels. Placenta 16:679–689

    Article  CAS  PubMed  Google Scholar 

  4. Husain S, Abdel-Latif AA (1998) Role of protein kinase C alpha in endothelin-1 stimulation of cytosolic phospholipase A2 and arachidonic acid release in cultured cat iris sphincter smooth muscle cells. Biochim Biophys Acta 1392:127–144

    Article  CAS  PubMed  Google Scholar 

  5. Schramek H, Wang Y, Konieczkowski M, Simonson MS, Dunn MJ (1994) Endothelin-1 stimulates cytosolic phospholipase A2 activity and gene expression in rat glomerular mesangial cells. Kidney Int 46:1644–1652

    Article  CAS  PubMed  Google Scholar 

  6. Simonson MS, Dunn MJ (1990) Cellular signaling by peptides of the endothelin gene family. FASEB J 4:2989–3000

    CAS  PubMed  Google Scholar 

  7. Griendling KK, Tsuda T, Alexander RW (1989) Endothelin stimulates diacylglycerol accumulation and activates protein kinase C in cultured vascular smooth muscle cells. J Biol Chem 264:8237–8240

    CAS  PubMed  Google Scholar 

  8. Van Renterghem C, Vigne P, Barhanin J, Schmid-Alliana A, Frelin C, Lazdunski M (1988) Molecular mechanism of action of the vasoconstrictor peptide endothelin. Biochem Biophys Res Commun 157:977–985

    Article  PubMed  Google Scholar 

  9. Chakraborti S, Michael JR, Chakraborti T (2004) Role of an aprotinin-sensitive protease in protein kinase C alpha-mediated activation of cytosolic phospholipase A2 by calcium ionophore (A23187) in pulmonary endothelium. Cell Signal 16:751–762

    Article  CAS  PubMed  Google Scholar 

  10. Chakraborti T, Das S, Chakraborti S (2005) Proteolytic activation of protein kinase C alpha by peroxynitrite in stimulating cytosolic phospholipase A2 in pulmonary endothelium: involvement of a pertussis toxin sensitive protein. Biochemistry 44:5246–5257

    Article  CAS  PubMed  Google Scholar 

  11. Chakraborti S, Roy S, Mandal A, Dey K, Chowdhury A, Shaikh S, Chakraborti T (2012) Role of PKCα-p38MAPK-Giα axis in NADPH oxidase derived O2·–mediated activation of cPLA2 under U46619 stimulation in pulmonary artery smooth muscle cells. Arch Biochem Biophys 523:169–180

    Article  CAS  PubMed  Google Scholar 

  12. Elliott SJ, Lacey DJ, Chilian WM, Brzezinska AK (1998) Peroxynitrite is a contractile agonist of cerebral artery smooth muscle cells. Am J Physiol 275:1585–1591

    Google Scholar 

  13. Eto A, Akita Y, Saido TC, Suzuki K, Kawashima S (1995) The role of the calpain-calpastatin system in thyrotropin-releasing hormone-induced selective down-regulation of a protein kinase C isozyme, nPKC epsilon, in rat pituitary GH4C1 cells. J Biol Chem 270:25115–25120

    Article  CAS  PubMed  Google Scholar 

  14. Lee CW, Lee IT, Lin CC, Lee HC, Lin WN, Yang CM (2010) Activation and induction of cytosolic phospholipase A2 by IL-1 beta in human tracheal smooth muscle cells role of MAPKs/p300 and NF-kappaB. J Cell Biochem 109:1045–1056

    CAS  PubMed  Google Scholar 

  15. Cheng SE, Lin CC, Lee IT, Hsu CK, Kou YR, Yang CM (2011) Cigarette smoke extract regulates cytosolic phospholipase A2 expression via NADPH oxidase/MAPKs/AP-1 and p300 in human tracheal smooth muscle cells. J Cell Biochem 112:589–599

    Article  CAS  PubMed  Google Scholar 

  16. Lee CW, Lin CC, Lee IT, Lee HC, Yang CM (2011) Activation and induction of cytosolic phospholipase A2 by TNF-α mediated through Nox2, MAPKs, NF-κB, and p300 in human tracheal smooth muscle cells. J Cell Physiol 226:2103–2114

    Article  CAS  PubMed  Google Scholar 

  17. Husain S, Abdel-Latif AA (1999) Endothelin-1 activates p38 mitogen-activated protein kinase and cytosolic phospholipase A2 in cat iris sphincter smooth muscle cells. Biochem J 342:87–96

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Chakraborti S, Gurtner GH, Michael JR (1989) Oxidant-mediated activation of phospholipase A2 in pulmonary endothelium. Am J Physiol 257:430–437

    Google Scholar 

  19. Burch RM (1988) Diacylglycerol stimulates phospholipase A2 from Swiss 3T3 fibroblasts. FEBS Lett 234:283–286

    Article  CAS  PubMed  Google Scholar 

  20. Burch RM, Axelrod J (1987) Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc Natl Acad Sci U S A 84:6374–6378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chakraborti T, Ghosh SK, Michael JR, Chakraborti S (1996) Role of an aprotinin-sensitive protease in the activation of Ca2+-ATPase by superoxide radical (O ·−2 ) in microsomes of pulmonary vascular smooth muscle. Biochem J 317:885–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hua J, Hasebe T, Someya A, Nakamura S, Sugimoto K, Nagaoka I (2000) Evaluation of the expression of NADPH oxidase components during maturation of HL-60 cells to neutrophil lineage. J Leukoc Biol 68:216–224

    CAS  PubMed  Google Scholar 

  23. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  24. Hummel BC (1959) A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can J Biochem Physiol 37:1393–1399

    Article  CAS  PubMed  Google Scholar 

  25. Emoto Y, Manome Y, Meinhardt G, Kisaki H, Kharbanda S, Robertson M, Ghayur T, Wong WW, Kamen R, Weichselbaum R (1995) Proteolytic activation of protein kinase C delta by an ICE-like protease in apoptotic cells. EMBO J 14:6148–6156

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lin H, Ozaki S, Fujishiro N, Takeda K, Imanaga I, Prestwich GD, Inoue M (2005) Subunit composition and role of Na+/K+-ATPases in adrenal chromaffin cells. J Physiol 564:161–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kitano T, Go M, Kikkawa U, Nishizuka Y (1986) Assay and purification of protein kinase C. Methods Enzymol 124:349–352

    Article  CAS  PubMed  Google Scholar 

  29. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  30. David WW (1978) A foundation for analysis in health and disease. In: Biostatistics, Wiley, New York, p. 219

  31. Li L, Fink GD, Watts SW, Northcott CA, Galligan JJ, Pagano PJ, Chen AF (2003) Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway in low-renin hypertension. Circulation 107:1053–1058

    Article  CAS  PubMed  Google Scholar 

  32. Loomis ED, Sullivan JC, Osmond DA, Pollock DM, Pollock JS (2005) Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta. J Pharmacol Exp Ther 315:1058–1064

    Article  CAS  PubMed  Google Scholar 

  33. Beswick RA, Dorrance AM, Leite R, Webb RC (2001) NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 38:1107–1111

    Article  CAS  PubMed  Google Scholar 

  34. Meyer JW, Schmitt ME (2000) A central role for the endothelial NADPH oxidase in atherosclerosis. FEBS Lett 472:1–4

    Article  CAS  PubMed  Google Scholar 

  35. Kramer RM, Sharp JD (1997) Structure, function and regulation of Ca2+-sensitive cytosolic phospholipase A2 (cPLA2). FEBS Lett 410:49–53

    Article  CAS  PubMed  Google Scholar 

  36. Abdel-Latif AA, Husain S, Yousufzai SY (2000) Role of protein kinase C alpha and mitogen-activated protein kinases in endothelin-1-stimulation of cytosolic phospholipase A2 in iris sphincter smooth muscle. J Cardiovasc Pharmacol 36:117–119

    Article  Google Scholar 

  37. Takigawa M, Sakurai T, Kasuya Y, Abe Y, Masaki T, Goto K (1995) Molecular identification of guanine-nucleotide-binding regulatory proteins which couple to endothelin receptors. Eur J Biochem 228:102–108

    Article  CAS  PubMed  Google Scholar 

  38. Cressman CM, Mohan PS, Nixon RA, Shea TB (1995) Proteolysis of protein kinase C: mM and microM calcium-requiring calpains have different abilities to generate, and degrade the free catalytic subunit, protein kinase M. FEBS Lett 367:223–227

    Article  CAS  PubMed  Google Scholar 

  39. Hashimoto E, Yamamura H (1989) Further studies on the ionic strength-dependent proteolytic activation of protein kinase C in rat liver plasma membrane by endogenous trypsin-like protease. J Biochem 106:1041–1048

    CAS  PubMed  Google Scholar 

  40. Murtha YM, Allen BM, Orr JA (1999) The role of protein kinase C in thromboxane A2-induced pulmonary artery vasoconstriction. J Biomed Sci 6:293–295

    Article  CAS  PubMed  Google Scholar 

  41. Yan L, Huang H, Tang QZ, Zhu LH, Wang L, Liu C, Bian ZY, Li H (2010) Breviscapine protects against cardiac hypertrophy through blocking PKC-alpha-dependent signaling. J Cell Biochem 109:1158–1171

    CAS  PubMed  Google Scholar 

  42. Bolla M, Matrougui K, Loufrani L, Maclouf J, Levy B, Levy-Toledano S, Habib A, Henrion D (2002) p38 mitogen-activated protein kinase activation is required for thromboxane- induced contraction in perfused and pressurized rat mesenteric resistance arteries. J Vasc Res 39:353–360

    Article  CAS  PubMed  Google Scholar 

  43. Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R, Houliston RA, Martin J, Zachary I (1997) Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/44 mitogen-activated protein kinase. FEBS Lett 420:28–32

    Article  CAS  PubMed  Google Scholar 

  44. Kramer RM, Roberts EF, Hyslop PA, Utterback BG, Hui KY, Jakubowski JA (1995) Differential activation of cytosolic phospholipase A2 (cPLA2) by thrombin and thrombin receptor agonist peptide in human platelets. Evidence for activation of cPLA2 independent of the mitogen-activated protein kinases ERK1/2. J Biol Chem 270:14816–14823

    Article  CAS  PubMed  Google Scholar 

  45. Hirata F, Corcoran BA, Venkatasubramanian K, Schiffmann E, Axelrod J (1979) Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes. Proc Natl Acad Sci U S A 76:2640–2643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Clark MA, Conway TM, Shorr RG, Crooke ST (1987) Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin. J Biol Chem 262:4402–4406

    CAS  PubMed  Google Scholar 

  47. Upmacis RK, Deeb RS, Resnick MJ, Lindenbaum R, Gamss C, Mittar D, Hajjar DP (2004) Involvement of the mitogen-activated protein kinase cascade in peroxynitrite-mediated arachidonic acid release in vascular smooth muscle cells. Am J Physiol Cell Physiol 286:1271–1280

    Article  Google Scholar 

  48. Xing M, Insel PA (1996) Protein kinase C-dependent activation of cytosolic phospholipase A2 and mitogen-activated protein kinase by alpha 1-adrenergic receptors in Madin–Darby canine kidney cells. J Clin Invest 97:1302–1310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sweatt JD, Connolly TM, Cragoe EJ, Limbird LE (1986) Evidence that Na+/H+ exchange regulates receptor-mediated phospholipase A2 activation in human platelets. J Biol Chem 261:8667–8673

    CAS  PubMed  Google Scholar 

  50. Michael JR, Markewitz BA (1996) Endothelins and the lung. Am J Respir Crit Care Med 154:555–581

    Article  CAS  PubMed  Google Scholar 

  51. Langleben D, DeMarchie M, Laporta D, Spanier AH, Schlesinger RD, Stewart DJ (1993) Endothelin-1 in acute lung injury and the adult respiratory distress syndrome. Am Rev Respir Dis 148:1646–1650

    Article  CAS  PubMed  Google Scholar 

  52. Meoli DF, White RJ (2010) Endothelin-1 induces pulmonary but not aortic smooth muscle cell migration by activating ERK1/2 MAP kinase. Can J Physiol Pharmacol 88:830–839

    Article  CAS  PubMed  Google Scholar 

  53. Douglas SA, Louden C, Vickery-Clark LM, Storer BL, Hart T, Feuerstein GZ, Elliott JD, Ohlstein EH (1994) A role for endogenous endothelin-1 in neointimal formation after rat carotid artery balloon angioplasty. Protective effects of the novel nonpeptide endothelin receptor antagonist SB 209670. Circ Res 75:190–197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to late Prof. Gail H Gurtner (Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland) and Prof. John R Michael (Department of Medicine, University of Utah Health Sciences Centre, Salt Lake City, Utah) for some help and suggestion. Thanks are due to Indian Council of Medical Research, New Delhi and the DST-PURSE programme of the University of Kalyani for partly financing the research. This article is dedicated to Prof. John R Michael and the late Professor Gail H Gurtner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Chakraborti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborti, S., Chowdhury, A. & Chakraborti, T. Cross-talk between p38MAPK and Giα in regulating cPLA2 activity by ET-1 in pulmonary smooth muscle cells. Mol Cell Biochem 400, 107–123 (2015). https://doi.org/10.1007/s11010-014-2267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2267-0

Keywords

Navigation