Skip to main content

Studies on mitogen-activated protein kinase signaling pathway in the alveolar macrophages of chronic bronchitis rats


Lipopolysaccharide (LPS), a potent stimulator of inflammatory responses in alveolar macrophages (AMs), activates several intracellular signaling pathways, including mitogen-activated protein kinases (MAPK). In the present study, we investigated the MAPK pathway in AMs of chronic bronchitis (CB) rats. CB was induced by endotracheal instillation of LPS followed by Bacillus Calmette Guerin injection through the caudal vein 1 week later. Specific inhibitors were used and protein phosphorylations were detected by Western blot. We found that Genistein (PTK inhibitor) could inhibit protein kinase C (PKC), phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt or PKB) MAPK signaling pathway with different degrees, LY294002 (PI3K inhibitor) could not only inhibit phospho-PI3K/Akt expression, but also inhibit p38 and c-Jun NH2-terminal kinases (JNK) phosphorylation. Calphostin C (PKC inhibitor) could inhibit phospho-PKC expression and exerted significant effects on extracellular signal-regulated kinases (ERK) phosphorylation, however, it had no impact on p38 and JNK phosphorylation. These results demonstrated that the LPS mediated signaling pathway of MAPK in AMs of CB rats could be described as follows: PTK-PI3K-Akt-JNK/p38 or PTK-PI3K-PKC-ERK, and PI3K may have a negative regulation on the activation of downstream proteins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10



Alveolar macrophages


Chronic bronchitis




Bacillus Calmette Guerin


Mitogen-activated protein kinases


Protein kinase C


Protein kinase A


Extracellular signal-regulated kinases


c-Jun NH2-terminal kinases


Fetal bovine serum




Bronchoalveolar lavage fluid


Phosphatidylinositol-3 kinase


Receptor tyrosine kinase


  1. 1.

    Song J, Li J, Zheng SR, Jin Y, Huang Y (2013) Anti-inflammatory and immunoregulatory effects of Yupingfeng powder on chronic bronchitis rats. Chin J Integr Med 19(5):353–359. doi:10.1007/s11655-013-1442-6

    Article  PubMed  Google Scholar 

  2. 2.

    Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406(6797):782–787

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Martin TR (2000) Recognition of bacterial endotoxin in the lungs. Am J Respir Cell Mol Biol 23(2):128–132

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Kearns MT, Barthel L, Bednarek JM, Yunt ZX, Henson PM, Janssen WJ (2014) Fas ligand-expressing lymphocytes enhance alveolar macrophage apoptosis in the resolution of acute pulmonary inflammation. Am J Physiol Lung Cell Mol Physiol 307(1):L62–L70. doi:10.1152/ajplung.00273.2013

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  5. 5.

    Nahas N, Molski TF, Fernandez GA, Sha’afi RI (1996) Tyrosine phosphorylation and activation of a new mitogen-activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists. Biochem J 318(Pt 1):247–253

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. 6.

    Ardeshna KM, Pizzey AR, Devereux S, Khwaja A (2000) The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96(3):1039–1046

    CAS  PubMed  Google Scholar 

  7. 7.

    Renda T, Baraldo S, Pelaia G, Bazzan E, Turato G, Papi A, Maestrelli P, Maselli R, Vatrella A, Fabbri LM, Zuin R, Marsico SA, Saetta M (2008) Increased activation of p38 MAPK in COPD. Eur Respir J 31(1):62–69

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Li H, Hu D, Fan H, Zhang Y, LeSage GD, Caudle Y, Stuart C, Liu Z, Yin D (2014) β-Arrestin 2 negatively regulates TLR4-triggered inflammatory signaling via targeting p38 MAPK and IL-10. J Biol Chem 289(33):23075–23085. doi:10.1074/jbc.M114.591495

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. 9.

    Lee YB, Schrader JW, Kim SU (2000) p38 map kinase regulates TNF-alpha production in human astrocytes and microglia by multiple mechanisms. Cytokine 12(7):874–880

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Chan ED, Riches DW (2001) IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am J Physiol Cell Physiol 280(3):C441–C450

    CAS  PubMed  Google Scholar 

  11. 11.

    Thorley AJ, Ford PA, Giembycz MA, Goldstraw P, Young A, Tetley TD (2007) Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide-stimulated primary human lung alveolar type II epithelial cells and macrophages. J Immunol 178(1):463–473

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ichikawa T, Zhang J, Chen K, Liu Y, Schopfer FJ, Baker PR, Freeman BA, Chen YE, Cui T (2008) Nitroalkenes suppress lipopolysaccharide-induced signal transducer and activator of transcription signaling in macrophages: a critical role of mitogen-activated protein kinase phosphatase 1. Endocrinology 149(8):4086–4094. doi:10.1210/en.2007-1639

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  13. 13.

    Huang Y, Li J, Cao Q, Yu SC, Lv XW, Jin Y, Zhang L, Zou YH, Ge JF (2006) Anti-oxidative effect of triterpene acids of Eriobotrya japonica (Thunb.) Lindl. leaf in chronic bronchitis rats. Life Sci 78(23):2749–2757

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Huang Y, Li J, Wang R, Wu Q, Li YH, Yu SC, Cheng WM, Wang YY (2007) Effect of triterpene acids of Eriobotrya japonica (Thunb.) Lindl. leaf on inflammatory cytokine and mediator induction from alveolar macrophages of chronic bronchitic rats. Inflamm Res 56(2):76–82

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Huang Y, Li J, Meng XM, Jiang GL, Li H, Cao Q, Yu SC, Lv XW, Cheng WM (2009) Effect of triterpene acids of Eriobotrya japonica (Thunb.) Lindl. leaf and MAPK signal transduction pathway on inducible nitric oxide synthase expression in alveolar macrophage of chronic bronchitis rats. Am J Chin Med 37(6):1099–1111

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Zeng Z, Gong H, Li Y, Jie K, Ding C, Shao Q, Liu F, Zhan Y, Nie C, Zhu W, Qian K (2013) Upregulation of miR-146a contributes to the suppression of inflammatory responses in LPS-induced acute lung injury. Exp Lung Res 39(7):275–282. doi:10.3109/01902148.2013.808285

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Choudhry MA, Uddin S, Sayeed MM (1998) Prostaglandin E2 modulation of p59fyn tyrosine kinase in T lymphocytes during sepsis. J Immunol 160(2):929–935

    CAS  PubMed  Google Scholar 

  18. 18.

    Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Peti W, Page R (2013) Molecular basis of MAP kinase regulation. Protein Sci 22(12):1698–1710. doi:10.1002/pro.2374

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. 20.

    Cheng Y, Keast JR (2009) Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats. BMC Neurosci 10:156. doi:10.1186/1471-2202-10-156

    PubMed Central  Article  PubMed  Google Scholar 

  21. 21.

    Mancuso G, Midiri A, Beninati C, Piraino G, Valenti A, Nicocia G, Teti D, Cook J, Teti G (2002) Mitogen-activated protein kinases and NF-kappa B are involved in TNF-alpha responses to group B streptococci. J Immunol 169(3):1401–1409

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan SF, Stern D, Mackman N (2001) Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98(5):1429–1439

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Chen H, Sohn J, Zhang L, Tian J, Chen S, Bjeldanes LF (2014) Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in IkappaBalpha/MAPK/ERK signaling pathways. Eur J Pharmacol 724:168–174. doi:10.1016/j.ejphar.2013.12.016

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  24. 24.

    Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60(3):261–310. doi:10.1124/pr.107.00106

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183

    CAS  PubMed  Google Scholar 

  26. 26.

    Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2(9):717–726

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Clark JE, Sarafraz N, Marber MS (2007) Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Pharmacol Ther 116(2):192–206

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Friday BB, Adjei AA (2008) Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res 14(2):342–346. doi:10.1158/1078-0432.CCR-07-4790

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Thompson N, Lyons J (2005) Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr Opin Pharmacol 5(4):350–356

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17(3):590–603

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Fehrenbacher N, Bar-Sagi D, Philips M (2009) Ras/MAPK signaling from endomembranes. Mol Oncol 3(4):297–307. doi:10.1016/j.molonc.2009.06.004

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  32. 32.

    Dong S, Liang D, An N, Jia L, Shan Y, Chen C, Sun K, Niu F, Li H, Fu S (2009) The role of MAPK and FAS death receptor pathways in testicular germ cell apoptosis induced by lead. Acta Biochim Biophys Sin (Shanghai) 41(9):800–807

    CAS  Article  Google Scholar 

  33. 33.

    Kuroda H, Fuentealba L, Ikeda A, Reversade B, De Robertis EM (2005) Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation. Genes Dev 19(9):1022–1027

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. 34.

    Weidhaas JB, Eisenmann DM, Holub JM, Nallur SV (2006) A conserved RAS/mitogen-activated protein kinase pathway regulates DNA damage-induced cell death postirradiation in Radelegans. Cancer Res 66(21):10434–10438

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Strong JE, Wong G, Jones SE, Grolla A, Theriault S, Kobinger GP, Feldmann H (2008) Stimulation of Ebola virus production from persistent infection through activation of the Ras/MAPK pathway. Proc Natl Acad Sci USA 105(46):17982–17987. doi:10.1073/pnas.0809698105

    PubMed Central  CAS  Article  PubMed  Google Scholar 

Download references


This work was supported by the National Science Foundations of China (No. 30572355), Provincial Science Foundation of Anhui (No. 090413134), Outstanding Young Teachers Foundation in Higher Education Institution (No. 2009SQRZ049ZD).

Author information



Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Meng, XM., Jiang, GL. et al. Studies on mitogen-activated protein kinase signaling pathway in the alveolar macrophages of chronic bronchitis rats. Mol Cell Biochem 400, 97–105 (2015).

Download citation


  • Alveolar macrophages
  • Chronic bronchitis
  • Mitogen-activated protein kinase signaling pathway