Skip to main content
Log in

Circulating levels of apelin, glucagon-like peptide and visfatin in hypercholesterolemic–hyperhomocysteinemic guinea-pigs: their relation with NO metabolism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the levels of regulatory peptides apelin, glucagon-like peptide (GLP-1) and visfatin in hypercholesterolemic and hyperhomocysteinemic state and to examine their relation with nitric oxide (NO) metabolism. 32 Male guinea pigs were divided into four groups and each group was fed as follows: (a) commercial chow, (b) cholesterol (chol)-rich diet, (c) methionine (meth)-rich diet, and (d) chol + meth-rich diet. Blood samples were drawn at the end of 10 weeks, and abdominal aorta was dissected for histopathological examination. Serum insulin, GLP-1, apelin, visfatin, and nitrotyrosine concentrations were measured by the manufacturer’s kits based on ELISA; asymmetric dimethylarginine (ADMA) and arginine levels were measured by the high performance liquid chromatography. Homocysteine level was measured by the chemiluminescence immunoassay; glucose, total chol and triglyceride levels were measured by the autoanalyzer. The microscopic examination of aorta indicated varying degrees of vascular disturbance in chol- and chol + meth-fed groups. High levels of chol and homocysteine, accompanied with significantly low levels of apelin and GLP-1 were detected in the plasma. Visfatin, ADMA, and nitrotyrosine levels both in chol- and chol + meth-fed groups were significantly higher than those in control animals, whereas arginine and arginine/ADMA ratio were lower. This study indicated that circulating levels of apelin, GLP-1, and visfatin are markedly altered during the development of atherosclerotic changes in close association with chol, homocysteine, NO, and ADMA levels. The measurements of these peptides in serum may help for the diagnosis and follow-up of vascular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zulli A, Widdop RE, Hare DL (2003) High methionine and cholesterol diet abolishes endothelial relaxation. Arterioscler Thromb Vasc Biol 23:1358–1363

    Article  CAS  PubMed  Google Scholar 

  2. Boucher J, Castan-Laurell I, Daviaud D (2005) Adipokine expression profile in adipocytes of different mouse models of obesity. Horm Metab Res 37:761–776

    Article  CAS  PubMed  Google Scholar 

  3. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118:119–125

    Article  CAS  PubMed  Google Scholar 

  4. Tatemoto K, Hosoya M, Habata Y et al (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251:471–476

    Article  CAS  PubMed  Google Scholar 

  5. Carpene C, Dray C, Attane C et al (2007) Expanding role for the apelin/APJ system in physiopathology. J Physiol Biochem 63:359–373

    Article  CAS  PubMed  Google Scholar 

  6. Goetze JP, Rehfeld JF, Carlsen J et al (2006) Apelin: a new plasma marker of cardiopulmonary disease. Regul Pept 133:134–138

    Article  CAS  PubMed  Google Scholar 

  7. Tatemoto K, Takayama K, Zou MX et al (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99:87–92

    Article  CAS  PubMed  Google Scholar 

  8. Saddi-Rosa P, Oliveira CS, Giuffrida FM et al (2010) Visfatin, glucose metabolism and vascular disease: a review of evidence. Diabetol Metab Syndr 2:21

    Article  PubMed Central  PubMed  Google Scholar 

  9. Chen MP, Chung FM, Chang DM (2006) Elevated plasma level of visfatin/pre-B cell colony-stimulating factor in patients with type 2 diabetes. J Clin Endocrinol Metab 91:295–299

    Article  CAS  PubMed  Google Scholar 

  10. Liu SW, Qiao SB, Yuan JS et al (2009) Association of plasma visfatin levels with inflammation, atherosclerosis, and acute coronary syndromes in humans. Clin Endocrinol (Oxf) 71:202–207

    Article  CAS  Google Scholar 

  11. Doyle ME, Egan JM (2007) Mechanisms of action of GLP-1 in the pancreas. Pharmacol Ther 113:546–593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Mita T, Watada H (2012) Glucagon like peptide-1 and atherosclerosis. Cardiovasc Hematol Agents Med Chem 10:309–318

    Article  CAS  PubMed  Google Scholar 

  13. Yamaoka-Tojo M, Tojo T, Takahira N et al (2010) Elevated circulating levels of an incretin hormone, glucagon-like peptide-1, are associated with metabolic components in high-risk patients with cardiovascular disease. Cardiovasc Diabetol 9:17

    Article  PubMed Central  PubMed  Google Scholar 

  14. Piotrowski K, Becker M, Zugwurst J et al (2013) Circulating concentrations of GLP-1 are associated with coronary atherosclerosis in humans. Cardiovasc Diabetol 12:117. doi:10.1186/1475-2840-12-117

    Article  PubMed Central  PubMed  Google Scholar 

  15. Coban J, Evran B, Ozkan F et al (2013) Effect of blueberry feeding on lipids and oxidative stress in the serum, liver and aorta of guinea pigs fed on a high-cholesterol diet. Biosci Biotechnol Biochem 77:389–391

    Article  CAS  PubMed  Google Scholar 

  16. Yalcinkaya S, Unlucerci Y, Giris M et al (2009) Oxidative and nitrosative stress and apoptosis in the liver of rats fed on high methionine diet: protective effect of taurine. Nutrition 25:436–444

    Article  CAS  PubMed  Google Scholar 

  17. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  18. Teerlink T (2005) Determination of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine in biological samples by HPLC. Methods Mol Med 108:263–274

    CAS  PubMed  Google Scholar 

  19. Sugiyama K, Kumazawa A, Zhou H et al (1998) Dietary methionine level affects linoleic acid metabolism through phosphatidylethanolamine N-methylation in rats. Lipids 33:235–242

    Article  CAS  PubMed  Google Scholar 

  20. Hirche F, Schröder A, Knoth B et al (2006) Effect of dietary methionine on plasma and liver cholesterol concentrations in rats and expression of hepatic genes involved in cholesterol metabolism. Br J Nutr 95:879–888

    Article  CAS  PubMed  Google Scholar 

  21. Woo CW, Siow YL, Pierce GN et al (2005) Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid accumulation via activation of transcription factors. Am J Physiol Endocrinol Metab 288:E1002–E1010

    Article  CAS  PubMed  Google Scholar 

  22. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Wallerath T, Münzel T et al (2002) Regulation of endothelial type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide Biol Chem 7:149–164

    Article  CAS  Google Scholar 

  24. Szuba A, Podgórski M (2006) Asymmetric dimethylarginine (ADMA) a novel cardiovascular risk factor—evidence from epidemiological and prospective clinical trials. Pharmacol Rep 58:16–20

    PubMed  Google Scholar 

  25. Böger RH, Maas R, Schulze F et al (2009) Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality—an update on patient populations with a wide range of cardiovascular risk. Pharmacol Res 60:481–487

    Article  PubMed  Google Scholar 

  26. Landim MBP, Dourado PM, Casella-Filho A et al (2013) High plasma concentrations of asymmetric dimethylarginine inhibit ischemic cardioprotection in hypercholesterolemic rats. Braz J Med Biol Res 46:454–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sydow K, Schwedhelm E, Arakawa N et al (2003) ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of l-arginine and B vitamins. Cardiovasc Res 57:244–252

    Article  CAS  PubMed  Google Scholar 

  28. Cooke JP, Ghebremariam YT (2011) DDAH says NO to ADMA. Arterioscler Thromb Vasc Biol 31:1462–1464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bekpinar S, Develi-Is S, Unlucerci Y et al (2013) Modulation of arginine and asymmetric dimethylarginine concentrations in liver and plasma by exogenous hydrogen sulfide in LPS-induced endotoxemia. Can J Physiol Pharmacol 91:1071–1075

    Article  CAS  PubMed  Google Scholar 

  30. Stühlinger MC, Oka RK, Graf EE et al (2003) Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine. Circulation 108:933–938

    Article  PubMed  Google Scholar 

  31. Jakubowski H, Zhang L, Bardeguez A et al (2000) Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res 7:45–51

    Article  Google Scholar 

  32. Knipp M, Braun O, Vasák M (2005) Searching for DDAH inhibitors: S-nitroso-l-homocysteine is a chemical lead. J Am Chem Soc 127:2372–2373

    Article  CAS  PubMed  Google Scholar 

  33. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gryglewski RJ, Palmer RM, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456

    Article  CAS  PubMed  Google Scholar 

  35. Reiter CD, Teng RJ, Beckman JS (2000) Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J Biol Chem 275:32460–32466

    Article  CAS  PubMed  Google Scholar 

  36. Tasci I, Dogru T, Naharci I et al (2007) Plasma apelin is lower in patients with elevated LDL-cholesterol. Exp Clin Endocrinol Diabetes 115:428–432

    Article  CAS  PubMed  Google Scholar 

  37. Karadag S, Ozturk S, Gursu M et al (2014) The relationship between apelin and cardiac parameters in patients on peritoneal dialysis: is there a new cardiac marker? BMC Nephrol 16(15):18. doi:10.1186/1471-2369-15-18

    Article  Google Scholar 

  38. Oyama J, Node K (2014) Incretin therapy and heart failure. Circ J 78:819–824

    Article  CAS  PubMed  Google Scholar 

  39. Avogaro A, Vigili de Kreutzenberg S, Fadini GP (2014) Cardiovascular actions of GLP-1 and incretin-based pharmacotherapy. Curr Diabetes Rep 14:483. doi:10.1007/s11892-014-0483-3

    Article  Google Scholar 

  40. Noyan-Ashraf MH, Shikatani EA, Schuiki I et al (2013) A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation 127:74–85

    Article  CAS  PubMed  Google Scholar 

  41. Ding L, Zhang G (2012) Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol Sin 33:75–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shiraki A, Oyama J, Komoda H et al (2012) The glucagon-like peptide 1 analog liraglutide reduces TNF-α-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 221:375–382

    Article  CAS  PubMed  Google Scholar 

  43. Kadoglou NP, Gkontopoulos A, Kapelouzou A et al (2011) Serum levels of vaspin and visfatin in patients with coronary artery disease—Kozani study. Clin Chim Acta 412:48–52

    Article  CAS  PubMed  Google Scholar 

  44. Vallejo S, Romacho T, Angulo J et al (2011) Visfatin impairs endothelium-dependent relaxation in rat and human mesenteric microvessels through nicotinamide phosphoribosyltransferase activity. PLoS ONE 6:e27299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Gunes F, Akbal E, Cakir E et al (2012) Visfatin may be a novel marker for identifying stages of essential hypertension in advanced age patients. Intern Med 51:553–557

    Article  CAS  PubMed  Google Scholar 

  46. Uslu S, Kebapci N, Kara M et al (2012) Relationship between adipocytokines and cardiovascular risk factors in patients with type 2 diabetes mellitus. Exp Ther Med 4:113–120

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Fund, Istanbul University, Project No. 22342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Figen Gurdol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusku-Kiraz, Z., Genc, S., Bekpinar, S. et al. Circulating levels of apelin, glucagon-like peptide and visfatin in hypercholesterolemic–hyperhomocysteinemic guinea-pigs: their relation with NO metabolism. Mol Cell Biochem 400, 69–75 (2015). https://doi.org/10.1007/s11010-014-2263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2263-4

Keywords

Navigation