Skip to main content

Advertisement

Log in

Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chemoprevention is regarded as one of the most promising and realistic approaches in the prevention of human cancer. Ellagic acid (EA) has been known for its chemopreventive activity against various cancers and numerous investigations have shown its apoptotic activity both in vivo and in vitro. The present study was focused to elucidate the anticancerous effect and the mode of action of EA against HCT-15 colon adenocarcinoma cells. Cell viability was assessed using trypan blue assay at different concentrations. EA also promoted cell cycle arrest substantially at G2/M phase in HCT-15 cells. The activities of alkaline phosphatase and lactate dehydrogenase were decreased upon EA treatment, which shows the antiproliferative and the cytotoxic effects, respectively. The production of reactive oxygen intermediates, which were examined by 2,7-dichlorodihydrofluorescein diacetate (H2DCF-DA), increased with time, after treatment with EA. In further studies, EA inhibited proliferation-associated markers proliferating cell nuclear antigen and cyclin D1. The induction of apoptosis was accompanied by a strong inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway by EA. The expression of PI3K and pAkt was down-regulated in EA-treated cells, compared to normal cells. Further, EA promoted the expression of Bax, caspase-3, and cytochrome c, and suppression of Bcl-2 activity in HCT-15 cells that was determined by western blot analysis. Increased annexin V apoptotic cells and DNA fragmentation also accompanied EA-induced apoptosis. In conclusion, EA increased the production of ROS, decreased cell proliferation, and induced apoptosis in HCT-15 cells, and thus can be used as an agent against colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal ABF, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Reddy BS, Cohen LA (1986) Diet and colon cancer. In: evidence from human and animal model studies. CRC Press, Boca Raton, pp 47–65

    Google Scholar 

  3. Giovannucci E, Stampfer MJ, Colditz G, Rimm EB, Willett WC (1992) Relationship of diet to risk of colorectal adenoma in men. J Natl Cancer Inst 84:91–98

    Article  CAS  PubMed  Google Scholar 

  4. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  CAS  PubMed  Google Scholar 

  5. Millan A, Huerta S (2009) Apoptosis-inducing factor and colon cancer. J Surg Res 151:163–170

    Article  CAS  PubMed  Google Scholar 

  6. Efferth T (2012) Signal transduction pathways of the epidermal growth factor receptor in colorectal cancer and their inhibition by small molecules. Curr Med Chem 19:5735–5744

    Article  CAS  PubMed  Google Scholar 

  7. Michl P, Downward J (2005) Mechanisms of disease: PI3K/AKT signaling in gastrointestinal cancers. Gastroenterology 43:1133–1139

    Article  CAS  Google Scholar 

  8. Mitsiades CS, Mitsiades N, Koutsilieris M (2004) The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 4:235–256

    Article  CAS  PubMed  Google Scholar 

  9. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  CAS  PubMed  Google Scholar 

  10. Jurenka JS (2008) Therapeutic applications of pomegranate (Punica granatum L.): a review. Altern Med Rev 13:128–144

    PubMed  Google Scholar 

  11. Li TM, Chen GW, Su CC, Lin JG, Yeh CC, Cheng KC, Chung JG (2005) Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anticancer Res 25:971–979

    PubMed  Google Scholar 

  12. Losso JN, Bansode RR, Trappey II A, Bawadi HA, Truax R (2004) In vitro anti-proliferative activities of ellagic acid. J Nutr Biochem 15:672–678

    Article  CAS  PubMed  Google Scholar 

  13. Mertens-Talcott SU, Bomser JA, Romero C, Talcott ST, Percival SS (2005) Ellagic acid potentiates the effect of quercetin on p21waf1/cip1, p53, and MAP-kinases without affecting intracellular generation of reactive oxygen species in vitro. J Nutr 135:609–614

    CAS  PubMed  Google Scholar 

  14. Umesalma S, Sudhandiran G (2011) Ellagic acid prevents rat colon carcinogenesis induced by 1, 2-dimethyl hydrazine through inhibition of AKT-phosphoinositide-3 kinase pathway. Eur J Pharmacol 660:249–258

    Article  CAS  PubMed  Google Scholar 

  15. Umesalma S, Sudhandiran G (2010) Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-alpha, and IL-6 in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin Pharmacol Toxicol 107:650–655

    Article  CAS  PubMed  Google Scholar 

  16. Umesalma S, Nagendraprabhu P, Sudhandiran G (2014) Antiproliferative and apoptotic-inducing potential of ellagic acid against 1,2-dimethyl hydrazine-induced colon tumorigenesis in Wistar rats. Mol Cell Biochem 388:157–172

    Article  CAS  PubMed  Google Scholar 

  17. Pettit GR, Hoard MS, Doubek DL, Schmidt JM, Pettit RK, Tackett LP, Chapuis JC (1996) Antineoplastic agents 338. The cancer cell growth inhibitory. Constituents of Terminalia arjuna (Combretaceae). J Ethnopharmacol 53:57–63

    Article  CAS  PubMed  Google Scholar 

  18. Rasola A, Geuna M (2001) A flow cytometry assay simultaneously detects independent apoptotic parameters. Cytometry 45:151–157

    Article  CAS  PubMed  Google Scholar 

  19. Sriram N, Kalayarasan S, Ashokkumar P, Sureshkumar A, Sudhandiran G (2008) Diallyl sulfide induces apoptosis in Colo 320 DM human colon cancer cells: involvement of caspase-3, NF-kappaB, and ERK-2. Mol Cell Biochem 311:157–165

    Article  CAS  PubMed  Google Scholar 

  20. Neutra M, Louvard D (1989) Functional epithelial cells in culture. Alan R Liss Inc., New York, pp 363–368

    Google Scholar 

  21. King J (1963) Lactate dehydrogenase. In: King J (ed) Practical clinical enzymology. D. Van Norstrand Co., London, pp 83–93

    Google Scholar 

  22. Towbin H, Stahelin H, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gel to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ho YS, Wang YJ, Lin JK (1996) Induction of p53 and p21/WAF1/CIP1 expression by nitric oxide and their association with apoptosis in human cancer cells. Mol Carcinog 16:20–31

    Article  CAS  PubMed  Google Scholar 

  24. Sudhandiran G, Shaha C (2003) Antimonial-induced increase in intracellular Ca2+through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 278:25120–25132

    Article  CAS  PubMed  Google Scholar 

  25. Lee YC, Lin HH, Hsu CH, Wang CJ, Chiang TA, Chen JH (2010) Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. Eur J Pharmacol 632:23–32

    Article  CAS  PubMed  Google Scholar 

  26. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004

    Article  CAS  PubMed  Google Scholar 

  27. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  CAS  PubMed  Google Scholar 

  28. Grutter MG (2000) Caspases: key players in programmed cell death. Curr Opin Struct Biol 10:649–655

    Article  CAS  PubMed  Google Scholar 

  29. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gupta K, Thakur VS, Bhaskaran N, Nawab A, Babcook MA, Jackson MW, Gupta S (2012) Green tea polyphenols induce p53-dependent and p53-independent apoptosis in prostate cancer cells through two distinct mechanisms. PLoS ONE 7:e52572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Vicinanza R, Zhang Y, Henning SM, Heber D (2003) Pomegranate juice metabolites, ellagic acid and urolithin A, synergistically inhibit androgen-independent prostate cancer cell growth via distinct effects on cell cycle control and apoptosis. Evid Based Complement Altern Med. doi:10.1155/2013/247504

    Google Scholar 

  32. Yuasa H, Hirano K, Kodama H, Nakanishi H, Imai T, Tsuda H, Imaida K, Tatematsu M (1994) Immunohistochemical demonstration of intestinal-type alkaline phosphatase in stomach tumors induced by N-Methyl-N′-nitro-N-nitrosoguanidine in rats. Jpn J Cancer Res 85:897–903

    Article  CAS  PubMed  Google Scholar 

  33. Reynertson KA, Charlson ME, Gudas LJ (2011) Induction of murine embryonic stem cell differentiation by medicinal plant extracts. Exp Cell Res 317:82–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sharif T, Auger C, Alhosin M, Ebel C, Achour M, Etienne-Selloum N, Fuhrmann G, Bronner C, Schini-Kerth VB (2010) Red wine polyphenols cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redox-sensitive up-regulation of p73 and down-regulation of UHRF1. Eur J Cancer 46:983–994

    Article  CAS  PubMed  Google Scholar 

  35. Jeong JC, Jang SW, Kim TH, Kwon CH, Kim YK (2010) Mulberry fruit (Moris fructus) extracts induce human glioma cell death in vitro through ROS-dependent mitochondrial pathway and inhibits glioma tumor growth in vivo. Nutr Cancer 62:402–412

    Article  PubMed  Google Scholar 

  36. Wang J, Zhang GY, Li XH (2006) Effect of indomethacin on Bfl-1, WISP-1 and proliferating cell nuclear antigen in colon cancer cell line HCT116 cells. Chin J Dig Dis 7:219–224

    Article  CAS  PubMed  Google Scholar 

  37. Subramaniya BR, Srinivasan G, Sadullah SS, Davis N, Subhadara LB, Halagowder D, Sivasitambaram ND (2011) Apoptosis inducing effect of plumbagin on colonic cancer cells depends on expression of COX-2. PLoS ONE 6:e18695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Arber N, Hibshoosh H, Moss SF, Sutter T, Zhang Y, Begg M, Wang S, Weinstein IB, Holt PR (1996) Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology 110:669–674

    Article  CAS  PubMed  Google Scholar 

  39. Bartkova J, Lukas J, Strauss M, Bartek J (1994) The PRAD-1/cyclin D1 oncogene product accumulates aberrantly in a subset of colorectal carcinomas. Int J Cancer 58:568–573

    Article  CAS  PubMed  Google Scholar 

  40. Umesalma S, Sudhandiran G (2010) Chemomodulation of the antioxidative enzymes and peroxidative damage in the colon of 1,2-dimethyl hydrazine-induced rats by ellagicacid. Phytother Res 1:S114–119

    Article  Google Scholar 

  41. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  42. Roy HK, Olusola BF, Clemens DL, Karolski WJ, Ratashak A, Lynch HT, Smyrk TC (2002) AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis 23:201–205

    Article  CAS  PubMed  Google Scholar 

  43. Adams LS, Seeram NP, Aggarwal BB, Takada Y, Sand D, Heber D (2006) Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. J Agric Food Chem 54:980–985

    Article  CAS  PubMed  Google Scholar 

  44. Huang J, Che MI, Lin NY, Hung JS, Huang YT, Lin WC, Huang HC, Lee PH, Liang JT, Huang MC (2013) The molecular chaperone Cosmc enhances malignant behaviors of colon cancer cells via activation of Akt and ERK. Mol Carcinog 1:E62–71

    Google Scholar 

  45. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV (2005) The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24:7482–7492

    Article  CAS  PubMed  Google Scholar 

  46. Palozza P, Torelli C, Boninsegna A, Simone R, Catalano A, Mele MC, Picci N (2009) Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett 283:108–117

    Article  CAS  PubMed  Google Scholar 

  47. Singh M, Singh R, Bhui K, Tyagi S, Mahmood Z, Shukla Y (2011) Tea polyphenols induce apoptosis through mitochondrial pathway and by inhibiting nuclear factor-kappaB and Akt activation in human cervical cancer cells. Oncol Res 19:245–257

    Article  PubMed  Google Scholar 

  48. Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S (2006) Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr 136:2715–2721

    CAS  PubMed  Google Scholar 

  49. Saglam O, Garrett CR, Boulware D, Sayegh Z, Shibata D, Malafa M, Yeatman T, Cheng JQ, Sebti S, Coppola D (2007) Activation of the serine/threonine protein kinase AKT during the progression of colorectal neoplasia. Clin Colorectal Cancer 6:652–656

    Article  PubMed  Google Scholar 

  50. Nakanishi K, Sakamoto M, Yamasaki S, Todo S, Hirohashi S (2005) Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer 103:307–312

    Article  CAS  PubMed  Google Scholar 

  51. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  52. Pettersson M, Jernberg-Wiklund H, Larsson LG, Sundstrom C, Givol I, Tsujimoto Y, Nilsson K (1992) Expression of the bcl-2 gene in human multiple myeloma cell lines and normal plasma cells. Blood 79:495–502

    CAS  PubMed  Google Scholar 

  53. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  PubMed  Google Scholar 

  54. Ho CC, Huang AC, Yu CS, Lien JC, Wu SH, Huang YP, Huang HY, Kuo JH, Liao WY, Yang JS, Chen PY, Chung JG (2013) Ellagic acid induces apoptosis in tsgh8301 human bladder cancer cells through the endoplasmic reticulum stress- and mitochondria-dependent signaling pathways. Environ Toxicol. doi:10.1002/tox.21857

    Google Scholar 

  55. Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG, Heber D (2005) In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem 16:360–367

    Article  CAS  PubMed  Google Scholar 

  56. Kao TY, Chung YC, Hou YC, Tsai YW, Chen CH, Chang HP, Chou JL, Hsu CP (2012) Effects of ellagic acid on chemosensitivity to 5-fluorouracil in colorectal carcinoma cells. Anticancer Res 32:4413–4418

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors S. Umesalma and P. Nagendraprabhu gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, India for the financial assistance in the form of Senior Research Fellowship.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapasam Sudhandiran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umesalma, S., Nagendraprabhu, P. & Sudhandiran, G. Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells. Mol Cell Biochem 399, 303–313 (2015). https://doi.org/10.1007/s11010-014-2257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2257-2

Keywords

Navigation