Skip to main content
Log in

The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Podocyte injury plays a critical role in the development and progression of diabetic nephropathy (DN). Over expression of TRPC6 on the podocytes has been revealed to cause podocyte injury in non-diabetic states. Besides, the emerging evidence from clinic revealed that vitamin D could reduce albuminuria and improve renal function, which was associated with podocyte protection. Our study aimed to investigate whether calcitriol ameliorating podocyte impairment is associated with regulation of the expression of TRPC6 in STZ-induced rats. Sprague-Dawley rats were randomly divided into three groups: normal control, DN, and DN treated with calcitriol (DN + VD); VD rats were treated with 0.1 μg/kg/d calcitriol by gavage. DN model rats were established by intraperitoneal injections of streptozocin. The rats were sacrificed after 18 weeks treatment. DN rats exhibited increased proteinuria accompanied by elevated TRPC6 expression. Treatment with calcitriol not only reduced proteinuria, but also normalized TRPC6 expression. Meanwhile, in DN rats, the expression of podocyte specific markers including nephrin and podocin was significantly decreased, accompanied by increased desmin, a marker of podocyte injury. Treatment with calcitriol reversed above changes. In addition, vitamin D receptor (VDR) was significantly decreased, whereas this reduction was attenuated by the calcitriol treatment. Moreover, TRPC6 was positively correlated with both 24 h urinary protein and desmin. In contrast, TRPC6 was negatively correlated with both VDR and nephrin expression in podocytes. Calcitriol can ameliorate podocyte injury, which is contributed by the inhibition of enhanced TRPC6 expression in the early stages of DN rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Jiang Y, Dai M, Lu J, Xu M, Li Y, Hu N, Li J, Mi S, Chen CS, Li G, Mu Y, Zhao J, Kong L, Chen J, Lai S, Wang W, Zhao W, Ning G (2013) Prevalence and control of diabetes in Chinese adults. JAMA 310:948–959

    Article  CAS  PubMed  Google Scholar 

  2. Reddy GR, Kotlyarevska K, Ransom RF, Menon RK (2008) The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy? Curr Opin Nephrol Hypertens 17:32–36

    Article  PubMed  Google Scholar 

  3. Kumar PA, Brosius FC, Menon RK (2011) The glomerular podocyte as a target of growth hormone action: implications for the pathogenesis of diabetic nephropathy. Curr Diabetes Rev 7:50–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Han H, Wang Y, Li X, Wang PA, Wei X, Liang W, Ding G, Yu X, Bao C, Zhang Y, Wang Z, Yi F (2013) Novel role of NOD2 in mediating Ca2+ signaling: evidence from NOD2-regulated podocyte TRPC6 channels in hyperhomocysteinemia. Hypertension 62:506–511

    Article  CAS  PubMed  Google Scholar 

  5. Dryer SE, Reiser J (2010) TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am J Physiol Renal Physiol 299:F689–F701

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Liu BC, Song X, Lu XY, Li DT, Eaton DC, Shen BZ, Li XQ, Ma HP (2013) High glucose induces podocyte apoptosis by stimulating TRPC6 via elevation of reactive oxygen species. Biochim Biophys Acta 1833:1434–1442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Li Z, Xu J, Xu P, Liu S, Yang Z (2013) Wnt/beta-catenin signalling pathway mediates high glucose induced cell injury through activation of TRPC6 in podocytes. Cell Prolif 46:76–85

    Article  CAS  PubMed  Google Scholar 

  8. Fornoni A (2010) Proteinuria, the podocyte, and insulin resistance. N Engl J Med 363:2068–2069

    Article  CAS  PubMed  Google Scholar 

  9. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Eckel J, Lavin PJ, Finch EA, Mukerji N, Burch J, Gbadegesin R, Wu G, Bowling B, Byrd A, Hall G, Sparks M, Zhang ZS, Homstad A, Barisoni L, Birbaumer L, Rosenberg P, Winn MP (2011) TRPC6 enhances angiotensin II-induced albuminuria. J Am Soc Nephrol 22:526–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kim EY, Anderson M, Dryer SE (2012) Insulin increases surface expression of TRPC6 channels in podocytes: role of NADPH oxidases and reactive oxygen species. Am J Physiol Renal Physiol 302:F298–F307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Liu D, Zhu Z, Tepel M (2008) The role of transient receptor potential channels in metabolic syndrome. Hypertens Res 31:1989–1995

    Article  CAS  PubMed  Google Scholar 

  13. Evans JF, Lee JH, Ragolia L (2009) Ang-II-induced Ca(2+) influx is mediated by the 1/4/5 subgroup of the transient receptor potential proteins in cultured aortic smooth muscle cells from diabetic Goto-Kakizaki rats. Mol Cell Endocrinol 302:49–57

    Article  CAS  PubMed  Google Scholar 

  14. Woudenberg-Vrenken TE, Bindels RJ, Hoenderop JG (2009) The role of transient receptor potential channels in kidney disease. Nat Rev Nephrol 5:441–449

    Article  CAS  PubMed  Google Scholar 

  15. Graham S, Gorin Y, Abboud HE, Ding M, Lee DY, Shi H, Ding Y, Ma R (2011) Abundance of TRPC6 protein in glomerular mesangial cells is decreased by ROS and PKC in diabetes. Am J Physiol Cell Physiol 301:C304–C315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Moller CC, Flesche J, Reiser J (2009) Sensitizing the slit diaphragm with TRPC6 ion channels. J Am Soc Nephrol 20:950–953

    Article  CAS  PubMed  Google Scholar 

  17. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    Article  CAS  PubMed  Google Scholar 

  18. Moller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, Pippin JW, Rastaldi MP, Wawersik S, Schiavi S, Henger A, Kretzler M, Shankland SJ, Reiser J (2007) Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol 18:29–36

    Article  CAS  PubMed  Google Scholar 

  19. Sonneveld R, Ferre S, Hoenderop JG, Dijkman HB, Berden JH, Bindels RJ, Wetzels JF, van der Vlag J, Nijenhuis T (2013) Vitamin D down-regulates TRPC6 expression in podocyte injury and proteinuric glomerular disease. Am J Pathol 182:1196–1204

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Deb DK, Zhang Z, Sun T, Liu W, Yoon D, Kong J, Chen Y, Chang A, Li YC (2012) Vitamin D receptor signaling in podocytes protects against diabetic nephropathy. J Am Soc Nephrol 23:1977–1986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sugimoto H, LeBleu VS, Bosukonda D, Keck P, Taduri G, Bechtel W, Okada H, Carlson W Jr, Bey P, Rusckowski M, Tampe B, Tampe D, Kanasaki K, Zeisberg M, Kalluri R (2012) Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 18:396–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Pan MM, Zhang MH, Ni HF, Chen JF, Xu M, Phillips AO, Liu BC (2013) Inhibition of TGF-beta1/Smad signal pathway is involved in the effect of Cordyceps sinensis against renal fibrosis in 5/6 nephrectomy rats. Food Chem Toxicol 58:487–494

    Article  CAS  PubMed  Google Scholar 

  23. Sanden SK, Wiggins JE, Goyal M, Riggs LK, Wiggins RC (2003) Evaluation of a thick and thin section method for estimation of podocyte number, glomerular volume, and glomerular volume per podocyte in rat kidney with Wilms’ tumor-1 protein used as a podocyte nuclear marker. J Am Soc Nephrol 14:2484–2493

    Article  PubMed  Google Scholar 

  24. Guo JK, Menke AL, Gubler MC, Clarke AR, Harrison D, Hammes A, Hastie ND, Schedl A (2002) WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet 11:651–659

    Article  CAS  PubMed  Google Scholar 

  25. Jefferson JA, Shankland SJ, Pichler RH (2008) Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int 74:22–36

    Article  CAS  PubMed  Google Scholar 

  26. Tan AL, Forbes JM, Cooper ME (2007) AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 27:130–143

    Article  CAS  PubMed  Google Scholar 

  27. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29:726–776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  29. Al-Badr W, Martin KJ (2008) Vitamin D and kidney disease. Clin J Am Soc Nephrol 3:1555–1560

    Article  CAS  PubMed  Google Scholar 

  30. Jones G (2007) Expanding role for vitamin D in chronic kidney disease: importance of blood 25-OH-D levels and extra-renal 1alpha-hydroxylase in the classical and nonclassical actions of 1alpha,25-dihydroxyvitamin D(3). Semin Dial 20:316–324

    Article  PubMed  Google Scholar 

  31. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R (2003) Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med 349:446–456

    Article  CAS  PubMed  Google Scholar 

  32. de Zeeuw D, Agarwal R, Amdahl M, Audhya P, Coyne D, Garimella T, Parving HH, Pritchett Y, Remuzzi G, Ritz E, Andress D (2010) Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 376:1543–1551

    Article  PubMed  Google Scholar 

  33. Fernandez-Juarez G, Luno J, Barrio V, de Vinuesa SG, Praga M, Goicoechea M, Lahera V, Casas L, Oliva J (2013) 25 (OH) vitamin D levels and renal disease progression in patients with type 2 diabetic nephropathy and blockade of the renin–angiotensin system. Clin J Am Soc Nephrol 8:1870–1876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mizobuchi M, Morrissey J, Finch JL, Martin DR, Liapis H, Akizawa T, Slatopolsky E (2007) Combination therapy with an angiotensin-converting enzyme inhibitor and a vitamin D analog suppresses the progression of renal insufficiency in uremic rats. J Am Soc Nephrol 18:1796–1806

    Article  CAS  PubMed  Google Scholar 

  35. He W, Kang YS, Dai C, Liu Y (2011) Blockade of Wnt/beta-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J Am Soc Nephrol 22:90–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kiekhaefer CM, Weber B, Huggins M, Gorichanaz C, Nehring JA, DeLuca HF (2011) 2alpha-Methyl-19-nor-(20S)-1,25-dihydroxyvitamin D(3) protects the insulin 2 knockout non-obese diabetic mouse from developing type 1 diabetes without hypercalcaemia. Clin Exp Immunol 166:325–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP (2006) Identification and localization of TRPC channels in the rat kidney. Am J Physiol Renal Physiol 290:F1241–F1252

    Article  CAS  PubMed  Google Scholar 

  38. Hsu YJ, Hoenderop JG, Bindels RJ (2007) TRP channels in kidney disease. Biochim Biophys Acta 1772:928–936

    Article  CAS  PubMed  Google Scholar 

  39. Huber TB, Schermer B, Benzing T (2007) Podocin organizes ion channel-lipid supercomplexes: implications for mechanosensation at the slit diaphragm. Nephron Exp Nephrol 106:e27–e31

    Article  CAS  PubMed  Google Scholar 

  40. Schlondorff J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR (2009) TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol 296:C558–C569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Chiluiza D, Krishna S, Schumacher VA, Schlondorff J (2013) Gain-of-function mutations in transient receptor potential C6 (TRPC6) activate extracellular signal-regulated kinases 1/2 (ERK1/2). J Biol Chem 288:18407–18420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14:931–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wang Y, Ding M, Chaudhari S, Ding Y, Yuan J, Stankowska D, He S, Krishnamoorthy R, Cunningham JT, Ma R (2013) Nuclear factor kappaB mediates suppression of canonical transient receptor potential 6 expression by reactive oxygen species and protein kinase C in kidney cells. J Biol Chem 288:12852–12865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Anderson M, Roshanravan H, Khine J, Dryer SE (2014) Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species. J Cell Physiol 229:434–442

    Article  CAS  PubMed  Google Scholar 

  45. Thilo F, Lee M, Xia S, Zakrzewicz A, Tepel M (2014) High glucose modifies transient receptor potential canonical type 6 channels via increased oxidative stress and syndecan-4 in human podocytes. Biochem Biophys Res Commun 450:312–317

    Article  CAS  PubMed  Google Scholar 

  46. Freundlich M, Quiroz Y, Zhang Z, Zhang Y, Bravo Y, Weisinger JR, Li YC, Rodriguez-Iturbe B (2008) Suppression of renin–angiotensin gene expression in the kidney by paricalcitol. Kidney Int 74:1394–1402

    Article  CAS  PubMed  Google Scholar 

  47. Xiao H, Shi W, Liu S, Wang W, Zhang B, Zhang Y, Xu L, Liang X, Liang Y (2009) 1,25-Dihydroxyvitamin D(3) prevents puromycin aminonucleoside-induced apoptosis of glomerular podocytes by activating the phosphatidylinositol 3-kinase/Akt-signaling pathway. Am J Nephrol 30:34–43

    Article  PubMed  Google Scholar 

  48. Haussler MR, Jurutka PW, Mizwicki M, Norman AW (2011) Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH)(2) vitamin D(3): genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab 25:543–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (No. 81370826), Medical Key Talents Programs of Jiangsu Province (RC2011124) and the Fundamental Research Funds for the Central Universities (CXLX13_122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Zhang.

Additional information

Xiaoliang Zhang and Zhixia Song have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Song, Z., Guo, Y. et al. The novel role of TRPC6 in vitamin D ameliorating podocyte injury in STZ-induced diabetic rats. Mol Cell Biochem 399, 155–165 (2015). https://doi.org/10.1007/s11010-014-2242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2242-9

Keywords

Navigation