Skip to main content
Log in

Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress in the insulin target tissues has been implicated in the pathophysiology of type 2 diabetes. The study has examined the oxidative stress parameters in the mitochondria of subcutaneous white adipose tissue from obese and non-obese subjects with or without type 2 diabetes. An accumulation of protein carbonyls, fluorescent lipid peroxidation products, and malondialdehyde occurs in the adipose tissue mitochondria of obese type 2 diabetic, non-diabetic obese, and non-obese diabetic subjects with the maximum increase noticed in the obese type 2 diabetes patients and the minimum in non-obese type 2 diabetics. The mitochondria from obese type 2 diabetics, non-diabetic obese, and non-obese type 2 diabetics also produce significantly more reactive oxygen species (ROS) in vitro compared to those of controls, and apparently the mitochondrial ROS production rate in each group is proportional to the respective load of oxidative damage markers. Likewise, the mitochondrial antioxidant enzymes like superoxide dismutase and glutathione peroxidase show decreased activities most markedly in obese type 2 diabetes subjects and to a lesser degree in non-obese type 2 diabetes or non-diabetic obese subjects in comparison to control. The results imply that mitochondrial dysfunction with enhanced ROS production may contribute to the metabolic abnormality of adipose tissue in obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17:171–180

    Article  CAS  PubMed  Google Scholar 

  2. Vincent HK, Taylor AG (2006) Biomarkers and potential mechanisms of obesity induced oxidant stress in humans. Int J Obes (Lond) 30:400–418

    Article  CAS  Google Scholar 

  3. Niemann B, Chen Y, Teschner M, Li L, Silber RE, Rohrbach S (2011) Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J Am Coll Cardiol 57:577–585

    Article  CAS  PubMed  Google Scholar 

  4. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm 2010:453892

    Article  PubMed Central  PubMed  Google Scholar 

  6. Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP, Rajala MW, Du X, Rollman B, Li W, Hawkins M, Barzilai N, Rhodes CJ, Fantus IG, Brownlee M, Scherer PE (2005) The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem 280:4617–4626

    Article  CAS  PubMed  Google Scholar 

  7. Robertson RP, Harmon J, Tran PO, Poitout V (2004) Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53(Suppl 1):S119–S124

    Article  CAS  PubMed  Google Scholar 

  8. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gurzov EN, Tran M, Fernandez-Rojo MA, Merry TL, Zhang X, Xu Y, Fukushima A, Waters MJ, Watt MJ, Andrikopoulos S, Neel BG, Tiganis T (2014) Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2. Cell Metab 20:85–102

    Article  CAS  PubMed  Google Scholar 

  10. Paneni F, Beckman JA, Creager MA, Cosentino F (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 34:2436–2443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    Article  CAS  PubMed  Google Scholar 

  12. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chakrabarti S, Sinha M, Thakurta IG, Banerjee P, Chattopadhyay M (2013) Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: intervention in a complex relationship by antioxidants. Curr Med Chem 20:4648–4664

    Article  CAS  PubMed  Google Scholar 

  14. Newsholme P, Haber EP, Hirabara SM, Rebelato EL, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12:537–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fato R, Bergamini C, Bortolus M, Maniero AL, Leoni S, Ohnishi T, Lenaz G (2009) Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species. Biochim Biophys Acta 1787:384–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027–36031

    Article  CAS  PubMed  Google Scholar 

  19. Cheng Z, Almeida FA (2014) Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link. Cell Cycle 13:890–897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sivitz WI (2010) Mitochondrial dysfunction in obesity and diabetes. US Endocrinol 6:20–27

    Google Scholar 

  21. Chattopadhyay M, Thakurta IG, Behera P, Ranjan KR, Khanna M, Mukhopadhyay S, Chakrabarti S (2011) Mitochondrial bioenergetics is not impaired in non-obese subjects with type 2 diabetes mellitus. Metabolism 60:1702–1710

    Article  CAS  PubMed  Google Scholar 

  22. Mohan V, Farooq S, Deepa M, Ravikumar R, Pitchumoni CS (2009) Prevalence of non-alcoholic fatty liver disease in urban south Indians in relation to different grades of glucose intolerance and metabolic syndrome. Diabetes Res Clin Pract 84:84–91

    Article  CAS  PubMed  Google Scholar 

  23. Kumar S, Mukherjee S, Mukhopadhyay P, Pandit K, Raychaudhuri M, Sengupta N, Ghosh S, Sarkar S, Mukherjee S, Chowdhury S (2008) Prevalance of diabetes and impaired fasting glucose in a selected population with special reference to influence of family history and anthropometric measurements—the Kolkata policeman study. J Assoc Physicians India 56:841–844

    CAS  PubMed  Google Scholar 

  24. Chakrabarti S, Munshi S, Banerjee K, Thakurta IG, Sinha M, Bagh MB (2011) Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis 2:242–256

    PubMed Central  PubMed  Google Scholar 

  25. Piantadosi CA, Suliman HB (2006) Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem 281:324–333

    Article  CAS  PubMed  Google Scholar 

  26. WHO/IOTF/IASO (2000) The Asia-Pacific perspective: redefining obesity and its treatment. World Health Organization, International Obesity Task Force, International Association for the Study of Obesity, Hong Kong

  27. Mohanty JG, Jaffe JS, Schulman ES, Raible DG (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxy phenoxazine derivative. J Immunol Methods 202:133–141

    Article  CAS  PubMed  Google Scholar 

  28. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  29. Shimasaki H (1994) Assay of fluorescent lipid peroxidation products. Methods Enzymol 233:338–340

    Article  CAS  PubMed  Google Scholar 

  30. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  31. Sun M, Zigman S (1978) An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem 90:81–89

    Article  CAS  PubMed  Google Scholar 

  32. Bagh MB, Thakurta IG, Biswas M, Behera P, Chakrabarti S (2011) Age-related oxidative decline of mitochondrial functions in rat brain is prevented by long term oral antioxidant supplementation. Biogerontology 12:119–131

    Article  CAS  PubMed  Google Scholar 

  33. Wendel A (1980) Glutathione peroxidase. In: Jacoby WD (ed) Enzymatic basis of detoxification, 3rd edn. Academic Press, New York, pp 333–353

    Chapter  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  35. Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF (2013) Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 6:19

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ma ZA, Zhao Z, Turk J (2012) Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res 2012:703538

    Article  PubMed Central  PubMed  Google Scholar 

  38. Jheng HF, Tsai PJ, Guo SM, Kuo LH, Chang CS, Su IJ, Chang CR, Tsai YS (2012) Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 32:309–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mogensen M, Sahlin K, Fernstrom M, Glintborg D, Vind BF, Beck-Nielsen H, Hojlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592–1599

    Article  CAS  PubMed  Google Scholar 

  40. Lefort N, Glancy B, Bowen B, Willis WT, Bailowitz Z, De Filippis EA, Brophy C, Meyer C, Højlund K, Yi Z, Mandarino LJ (2010) Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes 59:2444–2452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H, Zaha VG, Abel ED (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466

    Article  CAS  PubMed  Google Scholar 

  42. Hayden MS, Ghosh S (2004) Signaling to NF-kB. Genes Dev 18:2195–2224

    Article  CAS  PubMed  Google Scholar 

  43. Morgan MJ, Z-g Liu (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Siddle K (2011) Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol 47:R1–10

    Article  CAS  PubMed  Google Scholar 

  46. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15:1082–1087

    Article  CAS  PubMed  Google Scholar 

  47. Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K (2012) Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep 2:799

    Article  PubMed Central  PubMed  Google Scholar 

  48. Chevillotte E, Giralt M, Miroux B, Ricquier D, Villarroya F (2007) Uncoupling protein-2 controls adiponectin gene expression in adipose tissue through the modulation of reactive oxygen species production. Diabetes 56:1042–1050

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a Grant from Council of Scientific and Industrial Research (CSIR), Government of India. (No. 27(0202)/09/EMR-II, 2009-2012). We are thankful to Dr. Manoj Khanna, Cosmetic Surgeon for his generous help in providing the adipose tissue obtained by liposuction and Ms. Indrani Roy for technical help in tissue processing. We thank the West Bengal University of Health Sciences for their help and encouragement.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasanka Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, M., Khemka, V.K., Chatterjee, G. et al. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol Cell Biochem 399, 95–103 (2015). https://doi.org/10.1007/s11010-014-2236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2236-7

Keywords

Navigation