Skip to main content

Melanin Nanoparticles (MNPs) provide protection against whole-body ɣ-irradiation in mice via restoration of hematopoietic tissues


During radiotherapy, ionizing irradiation interacts with biological systems to produce free radicals, which attack various cellular components. The hematopoietic system is easily recognized to be radiosensitive and its damage may be severe. Melanin nanoparticles (MNPs) act as free radical scavengers prepared by polymerization of dopamine. In this study, a total of 110 male BALB/C mice were divided into five equal groups. Each group contained 22 mice. Mice of group A did not receive MNPs or irradiation (control group), group B was injected intraperitoneally (i.p.) with 50 mg/kg MNPs. Mice of group C and D were exposed to a dose of 7 Gy ɣ-irradiation and injected with the same dose of MNPs as in group B either 30 min pre- or post-irradiation, and group E was exposed to a dose of 7 Gy ɣ-irradiation only. The impact of MNPs on peripheral blood, spleen, and DNA damage induced by irradiation was evaluated by blood count, histopathology of the spleen, and comet assay for the DNA in the bone marrow at 1, 4, 8, and 12 days post-irradiation. Results of group E compared with control group (A) showed a significant depression in complete blood count. Additionally, histopathological observation showed the absence of megakaryocytes with delayed time post-irradiation, deposition of eosinophilic protein of their spleen appeared, as well as a remarkable decrease in spleen size was observed. Moreover, ɣ-irradiation-induced DNA damage as can be inferred from a significant increase by about 5–10 folds in all comet parameters (% of DNA, tail length, tail moment, and olive moment) in the DNA of the bone marrow. In contrast, pre-post treatment with MNPs protected hematopoietic tissues against radiation damage, and therefore, enhanced the survival of mice with 40 % in groups (C&D) compared with 10 % to group (E) till 30 days post-irradiation. In conclusion, these results demonstrated that synthetic MNPs provide significant radioprotection to the hematopoietic tissues.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Shirazi A, Mihandoost E, Mohseni M, Ghazi-Khansari M, Rabie Mahdavi S (2013) Radio-protective effects of melatonin against irradiation-induced oxidative damage in rat peripheral blood. Phys Med 29(1):65–74

    PubMed  Article  Google Scholar 

  2. 2.

    Mansour HH, Hafez HF, Fahmy NM, Hanafi N (2008) Protective effect of N-acetylcysteine against radiation induced DNA damage and hepatic toxicity in rats. Biochem Pharmacol 75(3):773–780

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment-tumorigenesis and therapy. Nat Rev Cancer 5(11):867–875

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Sonntag VC (1987) The chemical basis of radiation biology. Taylor and Francis, London

    Google Scholar 

  5. 5.

    Zhao W, Jiang X, Deng W, Lai Y, Wu M, Zhang Z (2012) Antioxidant activities of Ganoderma lucidum polysaccharides and their role on DNA damage in mice induced by cobalt-60 gamma-irradiation. Food Chem Toxicol 50(2):303–309

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Yokoya A, Shikazonoa N, Fujiia K, Urushibaraa A, Akamatsub K, Watanabe R (2008) DNA damage induced by the direct effect of radiation. Radiat Phys Chem 77:1280–1285

    CAS  Article  Google Scholar 

  7. 7.

    Zhao L, Wang Y, Shen HL, Shen XD, Nie Y, Wang Y, Han T, Yin M, Zhang QY (2012) Structural characterization and radioprotection of bone marrow hematopoiesis of two novel polysaccharides from the root of Angelica sinensis (Oliv.) Diels. Fitoterapia 83(8):712–1720

    Google Scholar 

  8. 8.

    Dainiak N (2002) Hematologic consequences of exposure to ionizing radiation. Exp Hematol 30(6):513–528

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Singh VK, Yadav VS (2005) Role of cytokines and growth factors in radioprotection. Exp Mol Pathol 78(2):156–169

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Hosseinimehr SJ (2007) Trends in the development of radioprotective agents. Drug Discov Today 12(19–20):794–805

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Lee TK, Johnke RM, Allison RR, O’Brien KF, Dobbs LJ (2005) Radioprotective potential of ginseng. Mutagenesis 20(4):37–43

    Article  Google Scholar 

  12. 12.

    Jagetia GC (2007) Radioprotective potential of plants and herbs against the effects of ionizing radiation. J Clin Biochem Nutr 40(2):74–81

    CAS  Article  Google Scholar 

  13. 13.

    Ghoneum M, Badr El-Din NK, Abdel Fattah SM, Tolentino L (2013) Arabinoxylan rice bran (MGN-3/Biobran) provides protection against whole-body γ-irradiation in mice via restoration of hematopoietic tissues. J Radiat Res 54(3):419–429

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. 14.

    Hill HZ (1992) The function of melanin or six blind people examine an elephant. BioEssays 14(1):49–56

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microb Rev 13(4):708–717

    CAS  Article  Google Scholar 

  16. 16.

    Nosanchuk JD, Casadevall A (2003) The contribution of melanin to microbial pathogenesis. Cell Microbiol 5(4):203–223

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11(6):525–531

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. 18.

    Dadachova E, Bryan RA, Howell RC, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment Cell Melanoma Res 21:192–199

    Article  Google Scholar 

  19. 19.

    Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE 2(5):e457

    PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    Schweitzer AD, Howell RC, Jiang Z, Bryan RA, Gerfen G, Chen CC, Mah D, Cahill S, Casadevall A, Dadachova E (2009) Physico-chemical evaluation of rationally designed melanins as novel nature-inspired radioprotectors. PLoS ONE 4(9):e7229

    PubMed Central  PubMed  Article  Google Scholar 

  21. 21.

    Kunwar A, Adhikary B, Jayakumar S, Barik A, Chattopadhyay S, Raghukumar S, riyadarsini KI (2012) Melanin, a promising radioprotector: mechanisms of actions in a mice model. Toxicol Appl Pharmacol 264(2):202–211

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Narayanan KB, Park HH (2013) Pleiotropic functions of antioxidant nanoparticles for longevity and medicine. Adv Colloid Interface Sci 201–202:30–42

    PubMed  Article  Google Scholar 

  23. 23.

    Schweitzer AD, Revskaya E, Chu P, Pazo V, Friedman M, Nosanchuk JD, Cahill S, Frases S, Casadevall A, Dadachova E (2010) Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. Int J Radiat Oncol Biol Phys 78(5):1494–1502

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. 24.

    Ju KY, Lee Y, Lee S, Park SB, Lee JK (2011) Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules 12(3):625–632

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Lee et al (2012) Nano-sized melanin particles and method of producing same. US patent 2012/0205590 A1 (2)

  26. 26.

    National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, DC

    Google Scholar 

  27. 27.

    Moller P, Knudsen LE, Loft S, Wallin H (2000) The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev 9(10):1005–1015

    CAS  PubMed  Google Scholar 

  28. 28.

    Awara WM, El-Nabi SH, El-Gohary M (1998) Assessment of vinyl chloride-induced DNA damage in lymphocytes of plastic industry workers using a single-cell gel electrophoresis Technique. Toxicology 128(1):9–16

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagenesis 35(3):206–221

    CAS  Article  Google Scholar 

  31. 31.

    Karbownik M, Reiter RJ (2000) Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Exp Biol Med 225(1):9–22

    CAS  Article  Google Scholar 

  32. 32.

    Yang R, Pei X, Wang J, Zhang Z, Zhao H, Li Q, Zhao M, Li Y (2010) Protective effect of a marine oligopeptide preparation from chum salmon (Oncorhynchus keta) on radiation-induced immune suppression in mice. J Sci Food Agric 90(13):2241–2248

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Assayed ME (2010) Radioprotective effects of black seed (Nigella sativa) oil against hemopoietic damage and immunosuppression in gamma-irradiated rats. Immunopharmacol Immunotoxicol 32(2):284–296

    PubMed  Article  Google Scholar 

  34. 34.

    Xu W, Shen X, Yang F, Han Y, Li R, Xue D, Jiang C (2012) Protective effect of polysaccharides isolated from Tremella fuciformis against radiation induced damage in mice. J Radiat Res. 53(3):353–360

    CAS  PubMed  Google Scholar 

  35. 35.

    Meredith P, Sarna T (2006) The Physical and chemical properties of eumelanin. Pigment Cell Res 19(6):572–594

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Sarna T, Swartz HM (2006) The physical properties of melanins. In: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Oetting WS, Ortonne J-P (eds) The pigmentary systems: physiology and pathophysiology. Blackwell Publishing Ltd, Oxford, pp 311–341

    Chapter  Google Scholar 

  37. 37.

    Centeno SA, Shamir J (2008) Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepia melanin pigment used in works of art. J Mol Structure 87:149–159

    Article  Google Scholar 

  38. 38.

    Paolino D, Fresta M, Sinha P, Ferrari M (2006) Drug delivery systems. In: Webster JG (ed) Encyclopedia of medical devices and instrumentation, 2nd edn. John Wiley and Sons, New York, pp 437–495

    Google Scholar 

  39. 39.

    Hosseinimehr SJ, Zakaryaee V, Froughizadeh M (2006) Oral oxymetholone reduces mortality induced by gamma irradiation in mice through stimulation of hematopoietic cells. Mol Cellular Biochem 287(1–2):193–199

    CAS  Article  Google Scholar 

  40. 40.

    Davis TA, Clarke TK, Mog SR, Landauer MR (2007) Subcutaneous administration of genistein prior to lethal irradiation supports multilineage, hematopoietic progenitor cell recovery and survival. Int J Radiat Biol 83(3):141–151

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Tsirlin M, Netzer N, Aberman Z, Gorodetsky R, Gaberman E, Pinzur L, Levdansky L (2013) Mitigation of lethal radiation syndrome in mice by intramuscular injection of 3D cultured adherent human placental stromal cells. PLoS ONE 8(6):e66549

    PubMed Central  PubMed  Article  Google Scholar 

  42. 42.

    Hu KX, Sun QY, Guo M, Ai HS (2010) The radiation protection and therapy effects of mesenchymal stem cells in mice with acute radiation injury. Br J Radiol 83(985):52–58

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. 43.

    Herodin FF, Bourin P, Mayol JF, Lataillade JJ, Drouet M (2003) Short-injection of antiapoptotic cytokine combinations soon after lethal γ -irradiation promotes survival. Blood 101:2609–2616

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Lord B, Hendry JH (1995) Radiation toxicology: bone marrow and leukemia. In: Lord JH (ed) Radiation toxicology: bone marrow and leukemia. Taylor & Francis, London, pp 1–21

    Google Scholar 

  45. 45.

    Oredipe OA, Furbert-Harris PM, Laniyan I, Griffin WM, Sridhar R (2003) Limits of stimulation of proliferation and differentiation of bone marrow cells of mice treated with swainsonine. Int Immunopharmacol 3(10–11):1537–1547

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Hosseinimehr SJ (2009) Potential utility of radioprotective agents in the practice of nuclear medicine. Cancer Biother Radiopharm 24(6):723–731

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Prasad KN (1995) Handbook of radiobiology. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Monira M. Rageh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rageh, M.M., EL-Gebaly, R.H., Abou-Shady, H. et al. Melanin Nanoparticles (MNPs) provide protection against whole-body ɣ-irradiation in mice via restoration of hematopoietic tissues. Mol Cell Biochem 399, 59–69 (2015).

Download citation


  • Melanin nanoparticles
  • Radioprotection
  • ɤ-irradiation
  • DNA damage