Skip to main content
Log in

MicroRNA 520d-3p inhibits gastric cancer cell proliferation, migration, and invasion by downregulating EphA2 expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Aberrant expression of microRNAs (miRNAs) has been shown to play important roles in cancer progression as a result of changes in expression of their target genes. In this study, we investigated the roles of miR-520d-3p on gastric cancer (GC) cell proliferation, migration, and invasion, and confirmed that this miRNA regulates EphA2 expression. The mRNA expression levels of miR-520d-3p and EphA2 in GC tissues and cell lines were evaluated. The clinical and prognostic significance of miR-520d-3p was assessed. The biological function of miR-520d-3p in GC cells was investigated using a methylthiazolyldiphenyl-tetrazolium bromide assay, cell cycle assay, transwell invasion assay, and wound-healing assay. miR-520d-3p expression was down-regulated and inversely correlated with the expression of EphA2 in GC tissues and cell lines. Lower expression of miR-520d-3p was associated with tumor invasion (P = 0.0357), lymph nodes metastasis (P = 0.0272), a higher clinical stage (P = 0.0041), and poorer overall survival (P = 0.0105). Luciferase assays revealed that miR-520d-3p inhibited EphA2 expression by targeting the 3′-untranslated region of EphA2 mRNA. Overexpression of miR-520d-3p dramatically inhibited the proliferation, cell cycle progression, invasion, and migration of GC cells, while down-regulation substantially promoted these properties. Moreover, c-Myc, CyclinD1, and matrix metalloproteinase-9 expression levels were down-regulated in miR-520d-3p mimic-transfected cells and up-regulated in miR-520d-3p inhibitor-transfected cells. Taken together, our data showed that miR-520d-3p appears to contribute to GC progression via the regulation of EphA2 and could serve as a novel prognostic and potential therapeutic marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. International Agency for Research on Cancer, Lyon. http://globocan.iarc.fr. Accessed 11 June 2014

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917. doi:10.1002/ijc.25516

    Article  PubMed  CAS  Google Scholar 

  3. Terry MB, Gaudet MM, Gammon MD (2002) The epidemiology of gastric cancer. Semin Radiat Oncol 12:111–127

    Article  PubMed  Google Scholar 

  4. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143–159. doi:10.1002/emmm.201100209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  6. Song JH, Meltzer SJ (2012) MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology 143:35–47. doi:10.1053/j.gastro.2012.05.003

    Article  PubMed  CAS  Google Scholar 

  7. Song S, Ajani JA (2013) The role of microRNAs in cancers of the upper gastrointestinal tract. Nat Rev Gastroenterol Hepatol 10:109–118. doi:10.1038/nrgastro.2012.210

    Article  PubMed  CAS  Google Scholar 

  8. Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ (2010) MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 29:5761–5771. doi:10.1038/onc.2010.352

    Article  PubMed  CAS  Google Scholar 

  9. Song F, Yang D, Liu B, Guo Y, Zheng H, Li L, Wang T, Yu J, Zhao Y, Niu R, Liang H, Winkler H, Zhang W, Hao X, Chen K (2014) Integrated microRNA network analyses identify a poor-prognosis subtype of gastric cancer characterized by the miR-200 family. Clin Cancer Res 20:878–889. doi:10.1158/1078-0432.CCR-13-1844

    Article  PubMed  CAS  Google Scholar 

  10. Kogo R, Mimori K, Tanaka F, Komune S, Mori M (2011) Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res 17:4277–4284. doi:10.1158/1078-0432.CCR-10-2866

    Article  PubMed  CAS  Google Scholar 

  11. Shin JY, Kim YI, Cho SJ, Lee MK, Kook MC, Lee JH, Lee SS, Ashktorab H, Smoot DT, Ryu KW, Kim YW, Choi IJ (2014) MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer. PLoS ONE 9:e85205. doi:10.1371/journal.pone.0085205

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang J, Xiao D, Li G, Ma J, Chen P, Yuan W, Hou F, Ge J, Zhong M, Tang Y, Xia X, Chen Z (2014) EphA2 promotes epithelial–mesenchymal transition through the Wnt/β-catenin pathway in gastric cancer cells. Oncogene 33:2737–2747. doi:10.1038/onc.2013.238

    Article  PubMed  CAS  Google Scholar 

  13. Hou F, Yuan W, Huang J, Qian L, Chen Z, Ge J, Wu S, Chen J, Wang J, Chen Z (2012) Overexpression of EphA2 correlates with epithelial–mesenchymal transition-related proteins in gastric cancer and their prognostic importance for postoperative patients. Med Oncol 29:2691–2700. doi:10.1007/s12032-011-0127-2

    Article  PubMed  CAS  Google Scholar 

  14. Yuan WJ, Ge J, Chen ZK, Wu SB, Shen H, Yang P, Hu B, Zhang GW, Chen ZH (2009) Over-expression of EphA2 and EphrinA-1 in human gastric adenocarcinoma and its prognostic value for postoperative patients. Dig Dis Sci 54:2410–2417. doi:10.1007/s10620-008-0649-4

    Article  PubMed  CAS  Google Scholar 

  15. Yuan W, Chen Z, Wu S, Ge J, Chang S, Wang X, Chen J, Chen Z (2009) Expression of EphA2 and E-cadherin in gastric cancer: correlated with tumor progression and lymphogenous metastasis. Pathol Oncol Res 15:473–478. doi:10.1007/s12253-008-9132-y

    Article  PubMed  CAS  Google Scholar 

  16. Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, Huse JT, Cajola L, Zanetti N, DiMeco F, De Filippis L, Mangiola A, Maira G, Anile C, De Bonis P, Reynolds BA, Pasquale EB, Vescovi AL (2012) The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 22:765–780. doi:10.1016/j.ccr.2012.11.005

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Nishimura M, Jung EJ, Shah MY, Lu C, Spizzo R, Shimizu M et al (2013) Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov 3:1302–1315. doi:10.1158/2159-8290.CD-13-0159

    Article  PubMed  CAS  Google Scholar 

  18. Lu C, Shahzad MM, Wang H, Landen CN, Kim SW, Allen J, Nick AM, Jennings N, Kinch MS, Bar-Eli M, Sood AK (2008) EphA2 overexpression promotes ovarian cancer growth. Cancer Biol Ther 7:1098–1103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Thaker PH, Deavers M, Celestino J, Thornton A, Fletcher MS, Landen CN, Kinch MS, Kiener PA, Sood AK (2004) EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 10:5145–5150

    Article  PubMed  CAS  Google Scholar 

  20. Cui XD, Lee MJ, Kim JH, Hao PP, Liu L, Yu GR, Kim DG (2013) Activation of mammalian target of rapamycin complex 1 (mTORC1) and Raf/Pyk2 by growth factor-mediated Eph receptor 2 (EphA2) is required for cholangiocarcinoma growth and metastasis. Hepatology 57:2248–2260. doi:10.1002/hep.26253

    Article  PubMed  CAS  Google Scholar 

  21. Ishikawa M, Miyahara R, Sonobe M, Horiuchi M, Mennju T, Nakayama E, Kobayashi M, Kikuchi R, Kitamura J, Imamura N, Huang CL, Date H (2012) Higher expression of EphA2 and ephrin-A1 is related to favorable clinicopathological features in pathological stage I non-small cell lung carcinoma. Lung Cancer 76:431–438. doi:10.1016/j.lungcan.2011.12.004

    Article  PubMed  Google Scholar 

  22. Brannan JM, Dong W, Prudkin L, Behrens C, Lotan R, Bekele BN, Wistuba I, Johnson FM (2009) Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non-small cell lung cancer. Clin Cancer Res 15:4423–4430. doi:10.1158/1078-0432.CCR-09-0473

    Article  PubMed  CAS  Google Scholar 

  23. Brantley-Sieders DM, Jiang A, Sarma K, Badu-Nkansah A, Walter DL, Shyr Y, Chen J (2011) Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS ONE 6:e24426. doi:10.1371/journal.pone.0024426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Herath NI, Spanevello MD, Doecke JD, Smith FM, Pouponnot C, Boyd AW (2012) Complex expression patterns of Eph receptor tyrosine kinases and their ephrin ligands in colorectal carcinogenesis. Eur J Cancer 48:753–762. doi:10.1016/j.ejca.2011.07.003

    Article  PubMed  CAS  Google Scholar 

  25. Tawadros T, Brown MD, Hart CA, Clarke NW (2012) Ligand-independent activation of EphA2 by arachidonic acid induces metastasis-like behaviour in prostate cancer cells. Br J Cancer 107:1737–1744. doi:10.1038/bjc.2012.457

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Chen X, Wang X, Ruan A, Han W, Zhao Y, Lu X, Xiao P, Shi H, Wang R, Chen L, Chen S, Du Q, Yang H, Zhang X (2014) miR-141 is a key regulator of renal cell carcinoma proliferation and metastasis by controlling EphA2 expression. Clin Cancer Res 20:2617–2630. doi:10.1158/1078-0432.CCR-13-3224

    Article  PubMed  CAS  Google Scholar 

  27. Aydoğdu E, Katchy A, Tsouko E, Lin CY, Haldosén LA, Helguero L, Williams C (2012) MicroRNA-regulated gene networks during mammary cell differentiation are associated with breast cancer. Carcinogenesis 33:1502–1511. doi:10.1093/carcin/bgs161

    Article  PubMed  Google Scholar 

  28. Wu N, Zhao X, Liu M, Liu H, Yao W, Zhang Y, Cao S, Lin X (2011) Role of microRNA-26b in glioma development and its mediated regulation on EphA2. PLoS ONE 6:e16264. doi:10.1371/journal.pone.0016264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Yuan W, Chen Z, Chen Z, Wu S, Guo J, Ge J, Yang P, Huang J (2012) Silencing of EphA2 inhibits invasion of human gastric cancer SGC-7901 cells in vitro and in vivo. Neoplasma 59:105–113

    Article  PubMed  CAS  Google Scholar 

  30. Coburn NG (2009) Lymph nodes and gastric cancer. J Surg Oncol 99:199–206. doi:10.1002/jso.21224

    Article  PubMed  Google Scholar 

  31. Faoro L, Singleton PA, Cervantes GM, Lennon FE, Choong NW, Kanteti R, Ferguson BD, Husain AN, Tretiakova MS, Ramnath N, Vokes EE, Salgia R (2010) EphA2 mutation in lung squamous cell carcinoma promotes increased cell survival, cell invasion, focal adhesions, and mammalian target of rapamycin activation. J Biol Chem 285:18575–18585. doi:10.1074/jbc.M109.075085

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Li X, Wang Y, Wang Y, Zhen H, Yang H, Fei Z, Zhang J, Liu W, Wang Y, Zhang X (2007) Expression of EphA2 in human astrocytic tumors: correlation with pathologic grade, proliferation and apoptosis. Tumour Biol 28:165–172

    Article  PubMed  Google Scholar 

  33. Tandon M, Vemula SV, Mittal SK (2011) Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets 15:31–51. doi:10.1517/14728222.2011.538682

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  35. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  PubMed  CAS  Google Scholar 

  36. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18:2883–2891

    Article  PubMed  CAS  Google Scholar 

  37. Wu B, Crampton SP, Hughes CC (2007) Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26:227–239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Scientific Foundation of China (No. 81172297), and the Fundamental Research Funds for the Central Universities of Central South University (No. 2013zzts082).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Yuan, W., Mei, W. et al. MicroRNA 520d-3p inhibits gastric cancer cell proliferation, migration, and invasion by downregulating EphA2 expression. Mol Cell Biochem 396, 295–305 (2014). https://doi.org/10.1007/s11010-014-2164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2164-6

Keywords

Navigation