Skip to main content
Log in

Taurine prevents high glucose-induced angiopoietin-2/tie-2 system alterations and apoptosis in retinal microvascular pericytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previously, we confirmed that taurine prevented diabetes-induced apoptosis in retinal glial cells via its anti-oxidation and anti-glutamate excitotoxicity mechanisms. The aim of this study is to investigate the effects of taurine on angiopoietin-2 (Ang-2)/Tie-2 system expressions and apoptosis in high glucose-treated retinal microvascular pericytes (RMPs). Also, the possible mechanism involved in the inhibition of taurine on RMPs apoptosis is investigated. The expressions of Ang-2, Tie-2 were detected by qRT-PCR and ELISA. The level of phosphorylated Tie-2 (P-Tie-2) was examined by ELISA. Hoechst 33342 and Annexin V/PI staining were used to detect RMPs apoptosis. The activity of caspase-3 was detected by assay kit. In 25 mM high glucose group, the expression of Ang-2 was increased significantly, taurine down-regulated Ang-2 in a dose (0.1, 1, and 10 mM)-dependent manner (P < 0.05). The Tie-2 expression and P-Tie-2 level were decreased in high glucose group (P < 0.05). Interestingly, taurine at 1 and 10 mM showed significant increase in Tie-2 expression and P-Tie-2 level (P < 0.05). The number of apoptotic RMPs and the activity of caspase-3 increased in the presence of high glucose (P < 0.05). Treatment with taurine at 1 mM decreased the number of apoptotic RMPs and the activity of caspase-3 (P < 0.05). Blocking antibody and small interfering RNA (siRNA) treatment showed that taurine required Tie-2 to perform its anti-apoptotic effect. Taken together, our data suggest that high glucose-induced Ang-2/Tie-2 system expressions alteration can be reversed by taurine, and that taurine can inhibit high glucose-induced RMPs apoptosis via Tie-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE (2008) The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology 115:1859–1868

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wong TY, Klein R, Islam FM, Cotch MF, Folsom AR, Klein BE, Sharrett AR, Shea S (2006) Diabetic retinopathy in a multi-ethniccohort in the United States. Am J Ophthalmol 141:446–455

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  4. Aiello LM (2003) Perspectives on diabetic retinopathy. Am J Ophthalmol 136:122–135

    Article  PubMed  Google Scholar 

  5. Klein BE, Klein R, Moss SE, Palta M (1995) A cohort study of the relationship of diabetic retinopathy to blood pressure. Arch Ophthalmol 113:601–606

    Article  PubMed  CAS  Google Scholar 

  6. Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands JL, Shani M, Deutsch U, Hammes HP (2008) Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 57:2495–2502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Kim J (2004) Pericytes and the prevention of diabetic retinopathy. Diabetes Res Clin Pract 66:49–51

    Article  Google Scholar 

  8. Kutcher ME, Kolyada AY, Surks HK, Herman IM (2007) Pericyte Rho GTPase mediates both pericyte contractile phenotype and capillary endothelial growth state. Am J Pathol 171:693–701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Zou MH, Li H, He C, Lin M, Lyons TJ, Xie Z (2011) Tyrosine nitration of prostacyclin synthase is associated with enhanced retinal cell apoptosisi-n diabetes. Am J Pathol 179:2835–2844

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME (2008) The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopa-thy. Invest Ophthalmol Vis Sci 49:2163–2171

    Article  PubMed  Google Scholar 

  11. Takagi H, Koyama S, Seike H, Oh H, Otani A, Matsumura M, Honda Y (2003) Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci 4:393–402

    Article  Google Scholar 

  12. Jones N, Master Z, Jones J, Bouchard D, Gunji Y, Sasaki H, Daly R, Alitalo K, Dumont DJ (1999) Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem 274:30896–30905

    Article  PubMed  CAS  Google Scholar 

  13. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  14. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  PubMed  CAS  Google Scholar 

  15. Puri MC, Bernstein A (2003) Requirement for the TIE family of receptortyrosine kinases in adult but not fetal hematopoiesis. Proc Natl Acad Sci USA 100:12753–12758

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Park YS, Kim NH, Jo I (2003) Hypoxia and vascular endothelial growthfactor acutely up-regulate angiopoietin-1 and Tie2 mRNA in bovineretinal pericytes. Microvasc Res 65:125–131

    Article  PubMed  CAS  Google Scholar 

  17. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, aligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  18. Hammes HP, Lin J, Wagner P, Feng Y, vom Hagen F, Krzizok T, Renner O, Breier G, Brownlee M, Deutsch U (2004) Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53:1104–1110

    Article  PubMed  CAS  Google Scholar 

  19. Watanabe D, Suzuma K, Suzuma I, Ohashi H, Ojima T, Kurimoto M, Murakami T, Kimura T, Takagi H (2005) Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am J Ophthalmol 139:476–481

    Article  PubMed  CAS  Google Scholar 

  20. Pfister F, Wang Y, Schreiter K, vom Hagen F, Altvater K, Hoffmann S, Deutsch U, Hammes HP, Feng Y (2010) Retinal overexpression of angiopoietin-2 mimics diabetic retinopathy and enhances vascular damages in hyperglycemia. Acta Diabetol 47:59–64

    Article  PubMed  CAS  Google Scholar 

  21. Feng Y, vom Hagen F, Pfister F, Djokic S, Hoffmann S, Back W, Wagner P, Lin J, Deutsch U, Hammes HP (2007) Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression. Thromb Haemost 97:99–108

    PubMed  CAS  Google Scholar 

  22. Rangasamy S, Srinivasan R, Maestas J, McGuire PG, Das A (2011) A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Invest Ophthalmol Vis Sci 52:3784–3791

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Chen WQ, Jin H, Nguyen M, Carr J, Lee YJ, Hsu CC, Faiman MD, Schloss JV, Wu JY (2001) Role of taurine in regulation of intracellular calcium level and neuroprotective function incult-ured neurons. J Neurosci Res 66:612–619

    Article  PubMed  CAS  Google Scholar 

  24. Di Leo MA, Santini SA, Cercone S, Lepore D, Silveri NG, Caputo S, Greco AV, Giardina B, Franconi F, Ghirlanda G (2002) Chronic taurine supplementation ameliorates oxidative stress and Na + K + ATPase impairment in the retina of diabetic rats. Amino Acids 23:401–406

    Article  PubMed  Google Scholar 

  25. Kaplan B, Karabay G, Zağyapan RD, Ozer C, Sayan H, Duyar I (2004) Effects of taurine in glucose and taurine administration. Amino Acids 27:327–333

    Article  PubMed  CAS  Google Scholar 

  26. Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17:330–346

    Article  PubMed  CAS  Google Scholar 

  27. Franconi F, Di Leo MA, Bennardini F, Ghirlanda G (2004) Is taurine beneficial in reducing risk factors for diabetes mellitus? Neurochem Res 29:143–150

    Article  PubMed  CAS  Google Scholar 

  28. Franconi F, Loizzo A, Ghirlanda G, Seghieri G (2006) Taurine supplementation and diabetes mellitus. Curr Opin Clin Nutr Metab Care 9:32–36

    Article  PubMed  CAS  Google Scholar 

  29. Di Leo MA, Ghirlanda G, Silveri NG, Giardina B, Franconi F, Santini SA (2003) Potential therapeutic effect of antioxidants in experimental diabetic retina: a comparison between chronic taurine and vitamin E plus selenium supplementations. Free Radic Res 37:323–330

    Article  PubMed  Google Scholar 

  30. De Luca G, Calpona PR, Caponetti A, Romano G, Di Benedetto A, Cucinotta D, Di Giorgio RM (2001) Taurine and osmoregulation: platelet taurine content, uptake, and release in type 2 diabetic patients. Metabolism 50:60–64

    Article  PubMed  Google Scholar 

  31. Yu X, Xu Z, Mi M, Xu H, Zhu J, Wei N, Chen K, Zhang Q, Zeng K, Wang J, Chen F, Tang Y (2008) Dietary taurine supplementation ameliorates diabetic retinopathy via anti-excitotoxicity of gl-utamate in streptozotocin-induced Sprague-Dawley rats. Neurochem Res 33:500–507

    Article  PubMed  CAS  Google Scholar 

  32. Zeng K, Xu H, Mi M, Zhang Q, Zhang Y, Chen K, Chen F, Zhu J, Yu X (2009) Dietary taurine supplementation prevents glial alterations in retina of diabetic rats. Neurochem Res 34:244–254

    Article  PubMed  CAS  Google Scholar 

  33. Zeng K, Xu H, Chen K, Zhu J, Zhou Y, Zhang Q, Mantian M (2010) Effects of taurine on glutamate uptake and degradation in Müller cells under diabetic conditions via antioxidant mechanism. Mol Cell Neurosci 45:192–199

    Article  PubMed  CAS  Google Scholar 

  34. Zeng K, Xu H, Mi M, Chen K, Zhu J, Yi L, Zhang T, Zhang Q, Yu X (2010) Effects of taurine on glial cells apoptosis and taurine transporter expression in retina under di-abetic conditions. Neurochem Res 35:1566–1574

    Article  PubMed  CAS  Google Scholar 

  35. Ueki I, Stipanuk MH (2007) Enzymes of the taurine biosynthetic pathway are expressed in rat mammary gland. J Nutr 137:1887–1894

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Hayes KC, Rabin AR, Berson EL (1975) An ultrastructural study of nutritionally induced and reversed retinal degeneration in cats. Am J Pathol 78:505–524

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Juen S, Kieselbach GF (1990) Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol 108:372–375

    Article  PubMed  CAS  Google Scholar 

  38. Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy Penn State Retina Research Group. Diabetes 47:815–820

    Article  PubMed  CAS  Google Scholar 

  39. Barber AJ, Antonetti DA, Gardner TW (2000) Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabet-es. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci 41:3561–3568

    PubMed  CAS  Google Scholar 

  40. Bernardi N (1985) On the role of taurine in the cerebellar cortex: a reappraisal. Acta Physiol Pharmacol Latinoam 35:153–164

    PubMed  CAS  Google Scholar 

  41. El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  PubMed  Google Scholar 

  42. Thurston JH, Hauhart RE, Dirgo JA (1980) Taurine: a role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci 26:1561–1568

    Article  PubMed  CAS  Google Scholar 

  43. Ohashi H, Takagi H, Koyama S, Oh H, Watanabe D, Antonetti DA, Matsubara T, Nagai K, Arai H, Kita T, Honda Y (2004) Alterations in expression of angiopoietins and the Tie-2 receptor in the retina of streptozotocin induced diabetic rats. Mol Vis 10:608–617

    PubMed  CAS  Google Scholar 

  44. Alikhani M, Roy S, Graves DT (2010) FOXO1 plays an essential role in apoptosis of retinal pericytes. Mol Vis 16:408–415

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Haribalaganesh R, Sheikpranbabu S, Elayappan B, Venkataraman D, Gurunatha S (2009) Pigment epithelium-derived factor down regulates hyperglycemia-induced apoptosis via PI3 K/Akt activationin goat retinal pericytes. Angiogenesis 2:381–389

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant 81202206). This work is also supported by the Public-Health-Department-Foundation of Sichuan, China (Grant 100533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaihong Zeng.

Additional information

Kaihong Zeng, Jian Ming: These authors contributed to the work equally and should be regarded as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, K., Ming, J., Yang, N. et al. Taurine prevents high glucose-induced angiopoietin-2/tie-2 system alterations and apoptosis in retinal microvascular pericytes. Mol Cell Biochem 396, 239–248 (2014). https://doi.org/10.1007/s11010-014-2159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2159-3

Keywords

Navigation