Skip to main content
Log in

RETRACTED ARTICLE: Thrombin stimulates VSMC proliferation through an EGFR-dependent pathway: involvement of MMP-2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

This article was retracted on 25 April 2024

This article has been updated

Abstract

In this study, the role of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK1/2), heparin-binding EGF-like growth factor (HB-EGF), general metalloproteinases, matrix metalloproteinases-2 (MMP-2) in mediating the mitogenic action of thrombin in rat vascular smooth muscle cells (VSMC) was investigated. The incubation of rat VSMC with thrombin (1 U/ml) for 5 min resulted in significant (p < 0.001) increase of ERK1/2 phosphorylation by 8.7 ± 0.9-fold, EGFR phosphorylation by 8.5 ± 1.3-fold (p < 0.001) and DNA synthesis by 3.6 ± 0.4-fold (p < 0.001). Separate 30-min pretreatments with EGFR tyrosine kinase irreversible inhibitor, 10 µM PD169540 (PD), and 20 µM anti-HB-EGF antibody significantly reduced thrombin-stimulated EGFR and ERK1/2 phosphorylation by 81, 72 % and by 48 and 61 %, respectively. Furthermore, the same pretreatments with PD or anti-HB-EGF antibody reduced thrombin-induced VSMC proliferation by 44 and 45 %, respectively. In addition, 30-min pretreatments with 10 µM specific MMP-2 inhibitor significantly reduced thrombin-stimulated phosphorylation of both EGFR and ERK1/2 by 25 %. Moreover, the same pretreatment with MMP-2 inhibitor reduced thrombin-induced VSMC proliferation by 45 %. These results show that the thrombin-induced DNA synthesis correlates with the level of ERK1/2 activation rather than EGFR activation. These results further suggest that thrombin acts through EGFR and ERK 1/2 signaling pathways involving MMP-2 to upregulate proliferation of VSMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

Abbreviations

ADAM:

A disintegrin and metalloproteinases

ANG II:

Angiotensin II

AG:

Reversible epidermal growth factor receptor tyrosine kinase inhibitor—AG1478

BrdU:

Thymidine analog, 5 bromo 2 deoxyuridine

DMEM:

Dulbecco’s modified Eagle’s medium

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

ERK1/2:

Extracellular signal regulated kinase 1/2

FCS:

Fetal calf serum

GM:

Hydroxamic acid class of reversible metallopeptidase inhibitors—GM6001

GPCR:

G protein coupled receptor

HB-EGF:

Heparin binding epidermal growth-factor like growth factor

HEPES buffer:

(4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid)—a zwitterionic organic chemical buffering agent

IC50 :

Concentration of an inhibitor where the response (or binding) is reduced by half

MAPK:

Mitogen activated protein kinases

MEK:

MAPKK, MAPK kinase

MMP:

Matrix metalloproteinases

MMP-2:

Matrix metalloproteinase 2

MP:

Metalloproteinases

PD:

Irreversible inhibitors of the epidermal growth factor receptor—PD 169540

PDGF:

Platelet-derived growth factor

PHEN:

o-Phenantroline, an inhibitor of total MP

PKC:

Protein kinase C

PKCδ:

Protein kinase C delta

pro HB-EGF:

pro Heparin binding epidermal growth factor-like growth factor

Raf:

Rapidly accelerated fibrosarcoma kinase

SDS:

Sodium dodecyl sulphate

SDS-PAGE:

SDS-polyacrylamide gel electrophoresis

SI-II:

MMP-2 specific inhibitor

VSMC:

Vascular smooth muscle cells

References

  1. Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287(19):2570–2581

    Article  CAS  PubMed  Google Scholar 

  2. Mnjoyan ZH, Doan D, Brandon JL, Felix K, Sitter CL, Rege AA, Brock TA, Fujise K (2008) The critical role of the intrinsic VSMC proliferation and death programs in injury-induced neointimal hyperplasia. Am J Physiol Heart Circ Physiol 294(5):H2276–H2284. doi:10.1152/ajpheart.91527.2007

    Article  CAS  PubMed  Google Scholar 

  3. Hozawa A, Folsom AR, Sharrett AR, Chambless LE (2007) Absolute and attributable risks of cardiovascular disease incidence in relation to optimal and borderline risk factors: comparison of African American with white subjects—Atherosclerosis Risk in Communities Study. Arch Intern Med 167(6):573–579. doi:10.1001/archinte.167.6.573

    Article  PubMed  Google Scholar 

  4. Borissoff JI, Spronk HM, Heeneman S, ten Cate H (2009) Is thrombin a key player in the ‘coagulation-atherogenesis’ maze? Cardiovasc Res 82(3):392–403. doi:10.1093/cvr/cvp066

    Article  CAS  PubMed  Google Scholar 

  5. Smiljanic K, Dobutovic B, Obradovic M, Nikolic D, Marche P, Isenovic ER (2011) Involvement of the ADAM 12 in thrombin-induced rat’s VSMCs proliferation. Curr Med Chem 18(22):3382–3386

    Article  CAS  PubMed  Google Scholar 

  6. Bobe R, Yin X, Roussanne MC, Stepien O, Polidano E, Faverdin C, Marche P (2003) Evidence for ERK1/2 activation by thrombin that is independent of EGFR transactivation. Am J Physiol Heart Circ Physiol 285(2):H745–H754. doi:10.1152/ajpheart.01042.2002

    Article  CAS  PubMed  Google Scholar 

  7. Hsieh HL, Tung WH, Wu CY, Wang HH, Lin CC, Wang TS, Yang CM (2009) Thrombin induces EGF receptor expression and cell proliferation via a PKC(delta)/c-Src-dependent pathway in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 29(10):1594–1601. doi:10.1161/ATVBAHA.109.185801

    Article  CAS  PubMed  Google Scholar 

  8. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402(6764):884–888. doi:10.1038/47260

    Article  CAS  PubMed  Google Scholar 

  9. Isenovic ER, Kedees MH, Haidara MA, Trpkovic A, Mikhailidis DP, Marche P (2010) Involvement of ERK1/2 kinase in insulin-and thrombin-stimulated vascular smooth muscle cell proliferation. Angiology 61(4):357–364. doi:10.1177/0003319709358693

    Article  CAS  PubMed  Google Scholar 

  10. Kalmes A, Vesti BR, Daum G, Abraham JA, Clowes AW (2000) Heparin blockade of thrombin-induced smooth muscle cell migration involves inhibition of epidermal growth factor (EGF) receptor transactivation by heparin-binding EGF-like growth factor. Circ Res 87(2):92–98. doi:10.1161/01.RES.87.2.92

    Article  CAS  PubMed  Google Scholar 

  11. Hsieh HL, Sun CC, Wang TS, Yang CM (2008) PKC-delta/c-Src-mediated EGF receptor transactivation regulates thrombin-induced COX-2 expression and PGE(2) production in rat vascular smooth muscle cells. Biochim Biophys Acta 1783(9):1563–1575. doi:10.1016/j.bbamcr.2008.03.016

    Article  CAS  PubMed  Google Scholar 

  12. Yin X, Polidano E, Faverdin C, Marche P (2005) Role of L-type calcium channel blocking in epidermal growth factor receptor-independent activation of extracellular signal regulated kinase 1/2. J Hypertens 23(2):337–350

    Article  CAS  PubMed  Google Scholar 

  13. Wang H, Ubl JJ, Stricker R, Reiser G (2002) Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am J Physiol Cell Physiol 283(5):C1351–C1364. doi:10.1152/ajpcell.00001.2002

    Article  CAS  PubMed  Google Scholar 

  14. Huang YL, Shi GY, Lee H, Jiang MJ, Huang BM, Wu HL, Yang HY (2009) Thrombin induces nestin expression via the transactivation of EGFR signalings in rat vascular smooth muscle cells. Cell Signal 21(6):954–968. doi:10.1016/j.cellsig.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  15. Koo BH, Han JH, Yeom YI, Kim DS (2010) Thrombin-dependent MMP-2 activity is regulated by heparan sulfate. J Biol Chem 285(53):41270–41279. doi:10.1074/jbc.M110.171595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Newby AC (2006) Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 69(3):614–624. doi:10.1016/j.cardiores.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  17. Ohtsu H, Dempsey PJ, Eguchi S (2006) ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Physiol Cell Physiol 291(1):C1–C10. doi:10.1152/ajpcell.00620.2005

    Article  CAS  PubMed  Google Scholar 

  18. Doran AC, Meller N, McNamara CA (2008) Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 28(5):812–819. doi:10.1161/ATVBAHA.107.159327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayashi K, Naiki T (2009) Adaptation and remodeling of vascular wall; biomechanical response to hypertension. J Mech Behav Biomed Mater 2(1):3–19. doi:10.1016/j.jmbbm.2008.05.002

    Article  PubMed  Google Scholar 

  20. Sata M (2003) Circulating vascular progenitor cells contribute to vascular repair, remodeling, and lesion formation. Trends Cardiovasc Med 13(6):249–253

    Article  PubMed  Google Scholar 

  21. McNamara CA, Sarembock IJ, Bachhuber BG, Stouffer GA, Ragosta M, Barry W, Gimple LW, Powers ER, Owens GK (1996) Thrombin and vascular smooth muscle cell proliferation: implications for atherosclerosis and restenosis. Semin Thromb Hemost 22(2):139–144. doi:10.1055/s-2007-999001

    Article  CAS  PubMed  Google Scholar 

  22. Isenovic E, Muniyappa R, Milivojevic N, Rao Y, Sowers JR (2001) Role of PI3-kinase in isoproterenol and IGF-1 induced ecNOS activity. Biochem Biophys Res Commun 285(4):954–958. doi:10.1006/bbrc.2001.5246

    Article  CAS  PubMed  Google Scholar 

  23. Blendea MC, McFarlane SI, Isenovic ER, Gick G, Sowers JR (2003) Heart disease in diabetic patients. Curr Diabetes Rep 3(3):223–229. doi:10.1007/s11892-003-0068-z

    Article  Google Scholar 

  24. Ross R (1971) The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol 50(1):172–186. doi:10.1083/jcb.50.1.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marche P, Herembert T, Zhu DL (1995) Molecular mechanisms of vascular hypertrophy in the spontaneously hypertensive rat. Clin Exp Pharmacol Physiol Suppl 22(1):S114–S116. doi:10.1111/j.1440-1681.1995.tb02844.x

    Article  CAS  PubMed  Google Scholar 

  26. Standley PR, Zhang F, Ram JL, Zemel MB, Sowers JR (1991) Insulin attenuates vasopressin-induced calcium transients and a voltage-dependent calcium response in rat vascular smooth muscle cells. J Clin Investig 88(4):1230–1236. doi:10.1172/JCI115426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Isenovic ER, Fretaud M, Koricanac G, Sudar E, Velebit J, Dobutovic B, Marche P (2009) Insulin regulation of proliferation involves activation of AKT and ERK 1/2 signaling pathways in vascular smooth muscle cells. Exp Clin Endocrinol Diabetes 117(5):214–219. doi:10.1055/s-0028-1085470

    Article  CAS  PubMed  Google Scholar 

  28. Isenovic ER, Jacobs DB, Kedees MH, Sha Q, Milivojevic N, Kawakami K, Gick G, Sowers JR (2004) Angiotensin II regulation of the Na+ pump involves the phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways in vascular smooth muscle cells. Endocrinology 145(3):1151–1160. doi:10.1210/en.2003-0100

    Article  CAS  PubMed  Google Scholar 

  29. Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate–polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112(2):195–203. doi:10.1016/0003-2697(81)90281-5

    Article  CAS  PubMed  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  31. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354. doi:10.1073/pnas.76.9.4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stepien O, Gogusev J, Zhu DL, Iouzalen L, Herembert T, Drueke TB, Marche P (1998) Amlodipine inhibition of serum-, thrombin-, or fibroblast growth factor-induced vascular smooth-muscle cell proliferation. J Cardiovasc Pharmacol 31(5):786–793

    Article  CAS  PubMed  Google Scholar 

  33. Smaill JB, Rewcastle GW, Loo JA, Greis KD, Chan OH, Reyner EL, Lipka E, Showalter HD, Vincent PW, Elliott WL, Denny WA (2000) Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino)quinazoline- and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions. J Med Chem 43(7):1380–1397. doi:10.1021/jm990482t

    Article  CAS  PubMed  Google Scholar 

  34. Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379(6565):557–560. doi:10.1038/379557a0

    Article  CAS  PubMed  Google Scholar 

  35. Stix B, Kahne T, Sletten K, Raynes J, Roessner A, Rocken C (2001) Proteolysis of AA amyloid fibril proteins by matrix metalloproteinases-1, -2, and -3. Am J Pathol 159(2):561–570. doi:10.1016/S0002-9440(10)61727-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nishino N, Powers JC (1978) Peptide hydroxamic acids as inhibitors of thermolysin. Biochemistry 17(14):2846–2850. doi:10.1021/bi00607a023

    Article  CAS  PubMed  Google Scholar 

  37. Levitzki A, Gazit A (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267(5205):1782–1788. doi:10.1126/science.7892601

    Article  CAS  PubMed  Google Scholar 

  38. Osherov N, Levitzki A (1994) Epidermal-growth-factor-dependent activation of the src-family kinases. European J Biochem/FEBS 225(3):1047–1053. doi:10.1111/j.1432-1033.1994.1047b.x

    Article  CAS  Google Scholar 

  39. Kanda Y, Mizuno K, Kuroki Y, Watanabe Y (2001) Thrombin-induced p38 mitogen-activated protein kinase activation is mediated by epidermal growth factor receptor transactivation pathway. Br J Pharmacol 132(8):1657–1664. doi:10.1038/sj.bjp.0703952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reynolds CM, Eguchi S, Frank GD, Motley ED (2002) Signaling mechanisms of heparin-binding epidermal growth factor-like growth factor in vascular smooth muscle cells. Hypertension 39(2 Pt 2):525–529. doi:10.1161/hy0202.103076

    Article  CAS  PubMed  Google Scholar 

  41. Isenovic ER, Soskic S, Trpkovic A, Dobutovic B, Popovic M, Gluvic Z, Putnikovic B, Marche P (2010) Insulin, thrombine, ERK1/2 kinase and vascular smooth muscle cells proliferation. Curr Pharm Des 16(35):3895–3902

    Article  CAS  PubMed  Google Scholar 

  42. Meloche S, Pouyssegur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26(22):3227–3239. doi:10.1038/sj.onc.1210414

    Article  CAS  PubMed  Google Scholar 

  43. Ginnan R, Pfleiderer PJ, Pumiglia K, Singer HA (2004) PKC-delta and CaMKII-delta 2 mediate ATP-dependent activation of ERK1/2 in vascular smooth muscle. Am J Physiol Cell Physiol 286(6):C1281–C1289. doi:10.1152/ajpcell.00202.2003

    Article  CAS  PubMed  Google Scholar 

  44. Dreux AC, Lamb DJ, Modjtahedi H, Ferns GA (2006) The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. Atherosclerosis 186(1):38–53. doi:10.1016/j.atherosclerosis.2005.06.038

    Article  CAS  PubMed  Google Scholar 

  45. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17(1):7–30. doi:10.1101/gad.1039703

    Article  CAS  PubMed  Google Scholar 

  46. Uzui H, Lee JD, Shimizu H, Tsutani H, Ueda T (2000) The role of protein-tyrosine phosphorylation and gelatinase production in the migration and proliferation of smooth muscle cells. Atherosclerosis 149(1):51–59

    Article  CAS  PubMed  Google Scholar 

  47. McCarty RE (1992) Iron contamination in adenosine triphosphate: a warning. Anal Biochem 205(2):371–372. doi:10.1016/0003-2697(92)90452-D

    Article  CAS  PubMed  Google Scholar 

  48. Moon SK, Jung SY, Choi YH, Lee YC, Patterson C, Kim CH (2004) PDTC, metal chelating compound, induces G1 phase cell cycle arrest in vascular smooth muscle cells through inducing p21Cip1 expression: involvement of p38 mitogen activated protein kinase. J Cell Physiol 198(2):310–323. doi:10.1002/jcp.10728

    Article  CAS  PubMed  Google Scholar 

  49. Ichiki T, Tokunou T, Fukuyama K, Iino N, Masuda S, Takeshita A (2004) 15-Deoxy-delta12,14-prostaglandin J2 and thiazolidinediones transactivate epidermal growth factor and platelet-derived growth factor receptors in vascular smooth muscle cells. Biochem Biophys Res Commun 323(2):402–408. doi:10.1016/j.bbrc.2004.08.101

    Article  CAS  PubMed  Google Scholar 

  50. Shah BH, Yesilkaya A, Olivares-Reyes JA, Chen HD, Hunyady L, Catt KJ (2004) Differential pathways of angiotensin II-induced extracellularly regulated kinase 1/2 phosphorylation in specific cell types: role of heparin-binding epidermal growth factor. Mol Endocrinol 18(8):2035–2048. doi:10.1210/me.2003-0476

    Article  CAS  PubMed  Google Scholar 

  51. Zhang H, Chalothorn D, Jackson LF, Lee DC, Faber JE (2004) Transactivation of epidermal growth factor receptor mediates catecholamine-induced growth of vascular smooth muscle. Circ Res 95(10):989–997. doi:10.1161/01.RES.0000147962.01036.bb

    Article  CAS  PubMed  Google Scholar 

  52. Lovdahl C, Thyberg J, Hultgardh-Nilsson A (2000) The synthetic metalloproteinase inhibitor batimastat suppresses injury-induced phosphorylation of MAP kinase ERK1/ERK2 and phenotypic modification of arterial smooth muscle cells in vitro. J Vasc Res 37(5):345–354

    Article  CAS  PubMed  Google Scholar 

  53. Uglow EB, Slater S, Sala-Newby GB, Aguilera-Garcia CM, Angelini GD, Newby AC, George SJ (2003) Dismantling of cadherin-mediated cell–cell contacts modulates smooth muscle cell proliferation. Circ Res 92(12):1314–1321. doi:10.1161/01.RES.0000079027.44309.53

    Article  CAS  PubMed  Google Scholar 

  54. Yang CM, Lin MI, Hsieh HL, Sun CC, Ma YH, Hsiao LD (2005) Bradykinin-induced p42/p44 MAPK phosphorylation and cell proliferation via Src, EGF receptors, and PI3-K/Akt in vascular smooth muscle cells. J Cell Physiol 203(3):538–546. doi:10.1002/jcp.20250

    Article  CAS  PubMed  Google Scholar 

  55. Bendeck MP, Irvin C, Reidy MA (1996) Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ Res 78(1):38–43. doi:10.1161/01.RES.78.1.38

    Article  CAS  PubMed  Google Scholar 

  56. Zempo N, Koyama N, Kenagy RD, Lea HJ, Clowes AW (1996) Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor. Arterioscler Thromb Vasc Biol 16(1):28–33. doi:10.1161/01.ATV.16.1.28

    Article  CAS  PubMed  Google Scholar 

  57. Grantcharova E, Reusch HP, Grossmann S, Eichhorst J, Krell HW, Beyermann M, Rosenthal W, Oksche A (2006) N-terminal proteolysis of the endothelin B receptor abolishes its ability to induce EGF receptor transactivation and contractile protein expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 26(6):1288–1296. doi:10.1161/01.ATV.0000220377.51354.30

    Article  CAS  PubMed  Google Scholar 

  58. Hultgardh-Nilsson A, Lovdahl C, Blomgren K, Kallin B, Thyberg J (1997) Expression of phenotype- and proliferation-related genes in rat aortic smooth muscle cells in primary culture. Cardiovasc Res 34(2):418–430

    Article  CAS  PubMed  Google Scholar 

  59. Thyberg J (1998) Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury. Histol Histopathol 13(3):871–891. doi:10.1177/002215549704500608

    Article  CAS  PubMed  Google Scholar 

  60. Pauly RR, Passaniti A, Bilato C, Monticone R, Cheng L, Papadopoulos N, Gluzband YA, Smith L, Weinstein C, Lakatta EG et al (1994) Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation. Circ Res 75(1):41–54. doi:10.1161/01.RES.75.1.41

    Article  CAS  PubMed  Google Scholar 

  61. Newby AC, Zaltsman AB (1999) Fibrous cap formation or destruction—the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 41(2):345–360

    Article  CAS  PubMed  Google Scholar 

  62. Shah PK, Galis ZS (2001) Matrix metalloproteinase hypothesis of plaque rupture: players keep piling up but questions remain. Circulation 104(16):1878–1880. doi:10.1161/hc4101.097419

    Article  CAS  PubMed  Google Scholar 

  63. Southgate KM, Davies M, Booth RF, Newby AC (1992) Involvement of extracellular-matrix-degrading metalloproteinases in rabbit aortic smooth-muscle cell proliferation. Biochem J 288(Pt 1):93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Islam MM, Franco CD, Courtman DW, Bendeck MP (2003) A nonantibiotic chemically modified tetracycline (CMT-3) inhibits intimal thickening. Am J Pathol 163(4):1557–1566. doi:10.1016/S0002-9440(10)63512-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bendeck MP, Conte M, Zhang M, Nili N, Strauss BH, Farwell SM (2002) Doxycycline modulates smooth muscle cell growth, migration, and matrix remodeling after arterial injury. Am J Pathol 160(3):1089–1095. doi:10.1016/S0002-9440(10)64929-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ikejiri M, Bernardo MM, Bonfil RD, Toth M, Chang M, Fridman R, Mobashery S (2005) Potent mechanism-based inhibitors for matrix metalloproteinases. J Biol Chem 280(40):33992–34002. doi:10.1074/jbc.M504303200

    Article  CAS  PubMed  Google Scholar 

  67. Mukhin YV, Gooz M, Raymond JR, Garnovskaya MN (2006) Collagenase-2 and -3 mediate epidermal growth factor receptor transactivation by bradykinin B2 receptor in kidney cells. J Pharmacol Exp Ther 318(3):1033–1043. doi:10.1124/jpet.106.104000

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported from the grant founded by CNRS and University Pierre and Marie Curie (to P.M.), from the Grant No. 173033 to (E.R.I.) funded by the Ministry of Science, Republic of Serbia, and by the grant 337-00-359/2005-01/16 founded by the “Pavle Savić”, and Republic of France, Ministry of Foreign Affairs (to P.M. and E.R.I). The authors are very grateful to Dr. Mirjana Macvanin for her helpful suggestions and constructive comments and great help in writing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esma R. Isenovic.

Additional information

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11010-024-05016-x

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smiljanic, K., Obradovic, M., Jovanovic, A. et al. RETRACTED ARTICLE: Thrombin stimulates VSMC proliferation through an EGFR-dependent pathway: involvement of MMP-2. Mol Cell Biochem 396, 147–160 (2014). https://doi.org/10.1007/s11010-014-2151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2151-y

Keywords

Navigation