Skip to main content
Log in

Hyperhomocysteinemia induced by methionine dietary nutritional overload modulates acetylcholinesterase activity in the rat brain

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Methionine is the only endogenous precursor of homocysteine, sulfur—containing amino acid and well known as risk factor for various brain disorders. Acetylcholinesterase is a serine protease that rapidly hydrolyzes neurotransmitter acetylcholine. It is widely distributed in different brain regions. The aim of this study was to elucidate the effects of methionine nutritional overload on acetylcholinesterase activity in the rat brain. Males of Wistar rats were randomly divided into control and experimental group, fed from 30th to 60th postnatal day with standard or methionine-enriched diet (double content comparing to standard, 7.7 g/kg), respectively. On the 61st postnatal day, total homocysteine concentration was determined and showed that animals fed with methionine-enriched diet had significantly higher serum total homocysteine concentrations comparing to control rats (p < 0.01). Acetylcholinesterase activity has been determined spectrophotometrically in homogenates of the cerebral cortex, hippocampus, thalamus, and nc. caudatus. Acetylcholinesterase activity showed tendency to decrease in all examined brain structures in experimental comparing to control rats, while statistical significance of this reduction was achieved in the cerebral cortex (p < 0.05). Brain slices were stained with haematoxylin and eosin (H&E) and observed under light microscopy. Histological analysis of H&E-stained brain slices showed that there were no changes in the brain tissue of rats which were on methionine-enriched diet compared to control rats. Results of this study showed selective vulnerability of different brain regions on reduction of acetylcholinesterase activity induced by methionine-enriched diet and consecutive hyperhomocysteinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl. 2):S40–S44

    Article  PubMed  CAS  Google Scholar 

  2. Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246. doi:10.1146/annurev.nutr.19.1.217

    Article  PubMed  CAS  Google Scholar 

  3. Hoffer LJ (2004) Homocysteine remethylation and trans-sulfuration. Metabolism 53(11):1480–1483. doi:10.1016/j.metabol.2004.06.003

    Article  PubMed  CAS  Google Scholar 

  4. McCully KS (1969) Vascular pathology of homocysteinemia: implications for thepathogenesis of arteriosclerosis. Am J Pathol 56(1):111–112

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Djurić D, Jakovljević V, Rašić-Marković A, Đurić A, Stanojlović O (2008) Homocysteine, folic acid and coronary artery disease: possible impact on prognosis and therapy. Indian J Chest Di Allied Sci 50:39–48

    Google Scholar 

  6. Herrmann W, Obeid R (2011) Homocysteine: a biomarker in neurodegenerative diseases. Clin Chem Lab Med 49(3):435–441. doi:10.1515/CCLM.2011.084

    PubMed  CAS  Google Scholar 

  7. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483. doi:10.1056/NEJMoa011613

    Article  PubMed  CAS  Google Scholar 

  8. Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem 80:101–110. doi:10.1046/j.0022-3042.2001.00676.x

    Article  PubMed  CAS  Google Scholar 

  9. Sachdev P (2004) Homocysteine, cerebrovascular disease and brain atrophy. J Neurol Sci 226:25–29. doi:10.1016/j.jns.2004.09.006

    Article  PubMed  CAS  Google Scholar 

  10. Stanojlović O, Rašić-Marković A, Hrnčić D, Šušić V, Macut Dj, Radosavljević T, Djurić D (2009) Two types of seizures in homocysteine thiolactone–treated adult rats, behavioral and encephalographic study. Cell Mol Neurobiol 29:329–339. doi:10.1007/s10571-008-9324-8

    Article  PubMed  Google Scholar 

  11. Jakubowski H (2004) Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci 61:470–487. doi:10.1007/s00018-003-3204-7

    Article  PubMed  CAS  Google Scholar 

  12. Perla-Kajan J, Twardowski T, Jakubowski H (2007) Mechanisms of homocysteine toxicity in humans. Amino Acids 32:561–572

    Article  PubMed  CAS  Google Scholar 

  13. Troen AM (2005) The central nervous system in animal models of hyperhomocysteinemia. Prog Neuropsychopharmacol Biol Psychiatry 29:1140–1151. doi:10.1016/j.pnpbp.2005.06.025

    Article  PubMed  CAS  Google Scholar 

  14. Hrnčić D, Rašić-Marković A, Krstić D, Macut D, Djuric D, Stanojlović O (2010) The role of nitric oxide in homocysteine thiolactone-induced seizures in adult rats. Cell Mol Neurobiol 30:219–231. doi:10.1007/s10571-009-9444-9

    Article  PubMed  Google Scholar 

  15. Rasić-Marković A, Stanojlović O, Hrnčić D, Krstić D, Čolović M, Šusić V, Radosavljević T, Djuric D (2009) The activity of erythrocyte and brain Na+/K+ and Mg2+-ATPases in rats subjected to acute homocysteine and homocysteine thiolactone administration. Mol Cell Biochem 327:39–45

    Article  PubMed  Google Scholar 

  16. Prado MA, Reis RA, Prado VF, de Mello MC, Gomez MV, de Mello FG (2002) Regulation of acetylcholine synthesis and storage. Neurochem Int 41(5):291–299. doi:10.1016/S0197-0186(02)00044-X

    Article  PubMed  CAS  Google Scholar 

  17. Gralewicz S (2006) Possible consequences of acetylcholinesterase inhibition in organophosphate poisoning. Discussion continued. Med Pr 57(3):291–302

    PubMed  CAS  Google Scholar 

  18. Schulpis K, Kalimeris K, Bakogiannis C, Tsakiris T, Tsakiris S (2006) The effect of in vitro homocystinuria on the suckling rat hippocampal acetylcholinesterase. Metab Brain Dis 21(1):21–28. doi:10.1007/s11011-006-9001-x

    Article  PubMed  CAS  Google Scholar 

  19. Stefanello FM, Zugno AI, Wannmacher CM, Wajner M, Wyse AT (2003) Homocysteine inhibits butyrylcholinesterase activity in rat serum. Metab Brain Dis 18(3):187–194. doi:10.1023/B:MEBR.0000020189.89585.3b

    Article  PubMed  CAS  Google Scholar 

  20. Scherer EB, da Cunha AA, Kolling J, da Cunha MJ, Schmitz F, Sitta A, Lima DD, Delwing D, Vargas CR, Wyse AT (2011) Development of an animal model for chronic mild hyperhomocysteinemia and its response to oxidative damage. Int J Dev Neurosci 29(7):693–699. doi:10.1016/j.ijdevneu.2011.06.004

    Article  PubMed  CAS  Google Scholar 

  21. Petrović M, Fufanović I, Elezović I, Čolović M, Krstić D, Jakovljević V, Đurić D (2010) The effect of homocysteine thiolactone on acetylcholinesterase activity in rat brain, blood and brain. Ser J Exp Clin Res 11(1):19–22

    Google Scholar 

  22. Darvesh S, Walsh R, Martin E (2007) Homocysteine thiolactone and human cholinesterases. Cell Mol Neurobiol 27(1):33–48. doi:10.1007/s10571-006-9114-0

    Article  PubMed  CAS  Google Scholar 

  23. Whittaker VP, Barker LA (1972) The subcellular fractionation of brain tissue with special reference to the preparation of synaptosomes and their component organelles. Method Neurochem 2:1–52

    Google Scholar 

  24. Ellman GL, Courtney KD, Anres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  26. De Bree A, Verschuren WM, Kromhout D, Kluijtmans LA, Blom HJ (2002) Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev 54(4):599–618. doi:10.1124/pr.54.4.599

    Article  PubMed  Google Scholar 

  27. Pexa A, Herrmann M, Taban-Shomal O, Henle T, Deussen A (2009) Experimental hyperhomocysteinaemia: differences in tissue metabolites between homocystine and methionine feeding in a rat model. Acta Physiol (Oxf) 197(1):27–34. doi:10.1111/j.1748-1716.2009.01981.x

    Article  CAS  Google Scholar 

  28. Dayal S, Arning E, Bottiglieri T, Böger RH, Sigmund CD, Faraci FM, Lentz SR (2004) Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke 35(8):1957–1962

    Article  PubMed  CAS  Google Scholar 

  29. Blaise SA, Nédélec E, Schroeder H, Alberto JM, Bossenmeyer-Pourié C, Guéant JL, Daval JL (2007) Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats. Am J Pathol 170(2):667–679

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Fukada S, Shimada Y, Morita T, Sugiyama K (2006) Suppression of methionine-induced hyperhomocysteinemia by glycine and serine in rats. Biosci Biotechnol Biochem 70(10):2403–2409

    Article  PubMed  CAS  Google Scholar 

  31. Matté C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Gonçalves CA, Erdtmann B, Salvador M, Wyse AT (2009) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: protective effect of folic acid. Neurochem Int 54(1):7–13

    Article  PubMed  Google Scholar 

  32. Schweinberger BM, Schwieder L, Scherer E, Sitta A, Vargas CR, Wyse AT (2014) Development of an animal model for gestational hypermethioninemia in rat and its effect on brain Na+, K+-ATPase/Mg2+-ATPase activity and oxidative status of the offspring. Metab Brain Dis 29(1):153–160. doi:10.1007/s11011-013-9451-x

    Article  PubMed  CAS  Google Scholar 

  33. Kolling J, Scherer EB, Siebert C, Marques EP, Dos Santos TM, Wyse AT (2014) Creatine prevents the imbalance of redox homeostasis caused by homocysteine in skeletal muscle of rats. Gene 545(1):72–79. doi:10.1016/j.gene.2014.05.005

    Article  PubMed  CAS  Google Scholar 

  34. Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudy PV, Arnelle DR, Stamler JS (1997) Neurotoxcity associated with dual actions of Homocysteine at the N-methyl-d-aspartate receptor. Proc Natl Acad Sci USA 94:5923–5928. doi:10.1073/pnas.94.11.5923

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Lazarewicz JW, Ziembowicz A, Matyja E, Stafiej A, Zieminska E (2003) Homocysteine-evoked 45Ca release in the rabbit hippocampus is mediated by both NMDA and group I metabotropic glutamate receptors: in vivo microdialysis study. Neurochem Res 28:259–269

    Article  PubMed  CAS  Google Scholar 

  36. Zou CG, Zhao YS, Gao SY, Li SD, Cao XZ, Zhang M, Zhang KQ (2010) Homocysteine promotes proliferation and activation of microglia. Neurobiol Aging 31(12):2069–2079. doi:10.1016/j.neurobiolaging.2008.11.007

    Article  PubMed  CAS  Google Scholar 

  37. Shi QS, Savage JE, Hufeisen SJ, Rauser L, Grajkowska E, Ernsberger P (2003) l-Homocysteine sulfinic acid and other acidic homocysteine derivates are potent and selective metabotropic glutamate receptor agonists. J Pharmacol Exp Ther 305:131–142. doi:10.1124/jpet.102.047092

    Article  PubMed  CAS  Google Scholar 

  38. Hrnčić D, Rašić-Marković A, Krstić D, Dj Macut, Šušić V, Djuric D, Stanojlović O (2012) Inhibition of the neuronal nitric oxide synthase potentiates homocysteine thiolactone—induced seizures in adult rats. Med Chem 8(1):59–64. doi:10.2174/157340612799278577

    Article  PubMed  Google Scholar 

  39. Ramakrishnan S, Sulochana KN, Lakshmi S, Selvi R, Angayarkanni N (2006) Biochemistry of homocysteine in health and diseases. Indian J Biochem Biophys 43:275–283

    PubMed  CAS  Google Scholar 

  40. Zhou JF, Zhou W, Zhang SM, Luo YE, Chen HH (2004) Oxidative stress and free radical damage in patients with acute dipterex poisoning. Biomed Environ Sci 17:223–233

    PubMed  Google Scholar 

  41. Tsakiris S, Angelogianni P, Schulpis KH, Stavridis JC (2000) Protective effect of l-phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals. Clin Biochem 33(2):103–106. doi:10.1016/S0009-9120(99)00090-9

    Article  PubMed  CAS  Google Scholar 

  42. Vučević D, Petronijević N, Radonjić N, Rašić-Marković A, Mladenović D, Radosavljević T, Hrnčić D, Djuric D, Sušić V, Dj Macut, Stanojlović O (2009) Acetylcholinesterase as a potential target of acute neurotoxic effects of lindane in rats. Gen Physiol Biophys 8:18–24

    Google Scholar 

  43. Mikroulis AV, Psarropoulou C (2012) Endogenous ACh effects on NMDA-induced interictal-like discharges along the septotemporal hippocampal axis of adult rats and their modulation by an early life generalized seizure. Epilepsia 53(5):879–887. doi:10.1111/j.1528-1167.2012.03440.x

    Article  PubMed  CAS  Google Scholar 

  44. Sener U, Zorlu Y, Karaguzel O, Ozdamar O, Coker I, Topbas M (2006) Effects of common anti-epileptic drug monotherapy on serum levels of homocysteine, vitamin B12, folic acid and vitamin B6. Seizure 15(2):79–85

    Article  PubMed  Google Scholar 

  45. Scherer EB, Loureiro SO, Vuaden FC, da Cunha AA, Schmitz F, Kolling J, Savio LE, Bogo MR, Bonan CD, Netto CA, Wyse AT (2014) Mild hyperhomocysteinemia increases brain acetylcholinesterase and proinflammatory cytokine levels in different tissues. Mol Neurobiol. (in press)

  46. Massoulie J, Perrier N, Noureddine H, Liang D, Bon S (2008) Old and new questions about cholinesterases. Chem Biol Interact 175(1–3):30–44. doi:10.1016/j.cbi.2008.04.039

    Article  PubMed  CAS  Google Scholar 

  47. Silman I, Sussman JL (2008) Acetylcholinesterase: How is structure related to function? Chem Biol Interact 175:3–10. doi:10.1016/j.cbi.2008.05.035

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of Serbia (Grant #175032). We are grateful to reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivera Stanojlović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrnčić, D., Rašić -Marković, A., Stojković, T. et al. Hyperhomocysteinemia induced by methionine dietary nutritional overload modulates acetylcholinesterase activity in the rat brain. Mol Cell Biochem 396, 99–105 (2014). https://doi.org/10.1007/s11010-014-2146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2146-8

Keywords

Navigation