Skip to main content
Log in

Malonyldialdehyde and glyoxal act differently on low-density lipoproteins and endotheliocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Under some pathological conditions, the natural dicarbonyl compounds can accumulate in the blood. The examples are malonyldialdehyde (MDA) formed as a secondary product of lipid peroxidation of unsaturated fatty acids during atherosclerosis, and glyoxal (GOX), a homolog of MDA, which accumulates during glucose autoxidation in patients with diabetes mellitus. This study compared the influence of both dicarbonyl compounds on low-density lipoproteins (LDL) and the membrane of endotheliocytes. In comparison with GOX, MDA induced more pronounced changes in physical and chemical properties of LDL particles. On the other hand, GOX-modified LDL particles were more prone to oxidation and aggregation than MDA-modified LDL. Incubation of endotheliocytes with MDA increased cell mechanical stiffness in contrast to incubation with GOX, which decreased it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EC:

Endothelial cell

LDL:

Low density lipoproteins

MDA:

Malonyldialdehyde

GOX:

Glyoxal

References

  1. Lankin VZ, Tikhaze AK (2003) Atherosclerosis as a free radical pathology and antioxidative therapy of this disease. In: Tomasi A, Özben T, Skulachev VP (eds) Free radicals, nitric oxide, and inflammation: molecular, biochemical, and clinical aspects, vol 344. IOS Press, NATO Science Series, Amsterdam, pp 218–231

    Google Scholar 

  2. Lankin VZ, Tikhaze AK, Kapel’ko VI et al (2007) Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress. Biochemistry (Mosc.) 72(10):1081–1090

    Article  CAS  Google Scholar 

  3. Steinberg D, Witztum JL (2010) Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol 30:2311–2316

    Article  PubMed  CAS  Google Scholar 

  4. Lankin VZ, Tikhaze AK, Konovalova GG et al (2010) Aldehyde-dependent modification of low density lipoproteins. In: Rathbound JE (ed) Handbook of lipoprotein research. NOVA Sci. Publish., Inc., New York, pp 85–107

    Google Scholar 

  5. Lankin VZ, Konovalova GG, Tikhaze AK, Nedosugova LV (2011) The influence of glucose on free radical peroxidation of low density lipoproteins in vitro and in vivo. Biochem (Mosc.) Suppl Ser B 5:284–292

    Article  Google Scholar 

  6. Donato H (1981) Lipid peroxidation, crosslinking reactions, and aging. In: Sohal RS (ed) Age pigments. Elsevier, Amsterdam, pp 63–81

    Google Scholar 

  7. Lankin VZ (2003) The enzymatic systems in the regulation of free radical lipid peroxidation. In: Tomasi A, Özben T, Skulachev VP (eds) Free radicals, nitric oxide, and inflammation: molecular, biochemical, and clinical aspects, vol 344. IOS Press, NATO Science Series, Amsterdam, pp 8–23

    Google Scholar 

  8. Tappel AL (1980) Measurement of and protection from in vivo lipid peroxidation. In: Pryor WA (ed) Free radicals in biology, vol 4. Acad. Press, London, pp 1–47

    Chapter  Google Scholar 

  9. Refsgaard HH, Tsai L, Stadtman ER (2000) Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proc Natl Acad Sci USA 97:611–616

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Melkumyants AM, Balashov SA, Khayutin VM (1989) Endothelium-dependent control of arterial diameter by blood viscosity. Cardiovasc Res 23:741–747

    Article  PubMed  CAS  Google Scholar 

  11. Melkumyants AM, Balashov SA, Khayutin VM (1995) Control of arterial lumen by shear stress on endothelium. NIPS 10:204–210

    Google Scholar 

  12. Melkumyants AM, Balashov SA, Kartamyshev SP (1994) Anticonstrictor effect of endo-thelium sensitivity to shear stress. Pflugers Arch 427:264–269

    Article  PubMed  CAS  Google Scholar 

  13. Melkumyants AM, Balashov SA, Kartamyshev SP (1997) Role of shear stress-induced arterial dilation in the development of collateral circulation. XXXIII International Congress of Physiological Society, vol 1. St. Petersburg, p 658

  14. Kartamyshev SP, Balashov SA, Melkumyants AM (2007) Role of endothelium sensitivity to shear stress in noradrenaline-induced constriction of feline femoral arterial bed under constant flow and constant pressure perfusions. J Vasc Res 44:1–10

    Article  PubMed  CAS  Google Scholar 

  15. Melkumyants AM, Balashov SA, Smiesko V, Khayutin VM (1986) Selective blocking of arterial sensitivity to blood flow rate by glutaraldehyde. Bull Exper Biol Med 101(5):568–570

    Article  Google Scholar 

  16. Melkumyants AM, Balashov SA (1987) Control of the arterial lumen by shear stress: role of endothelium deformability. Physiol Bohemoslov 36:571–573

    Google Scholar 

  17. Tertov VV, Sobenin IA, Cabbazov ZA et al (1992) Multiple-modified desyalized low-density lipoproteins that cause intracellular lipid accumulation. Isolation, fractionation, and characterization. Lab Invest 67:665–675

    PubMed  CAS  Google Scholar 

  18. Requena JR, Fu MX, Ahmed MU et al (1997) Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human low-density lipoprotein. Biochem J 322:317–325

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Schalkwijk CG, Vermeer MA, Stehouwer CD et al (1998) Effect of methylglyoxal on the physico-chemical and biological properties of low-density lipoprotein. Biochim Biophys Acta 1394:187–198

    Article  PubMed  CAS  Google Scholar 

  20. Aksenov DV, Medvedeva LA, Skalbe TA et al (2008) Deglycosylation of apoB-containing lipoproteins increase their ability to aggregate and to promote intracellular cholesterol accumulation in vitro. Arch Physiol Biochem 114:349–356

    Article  PubMed  CAS  Google Scholar 

  21. Antonov AS, Nikolaeva MA, Klueva TS et al (1986) Primary culture of endothelial cells from atherosclerotic human aorta. Part 1. Identification, morphological and ultrastructural characteristics of two endothelial cell subpopulations. Atherosclerosis 59:1–19

    Article  PubMed  CAS  Google Scholar 

  22. Levesque MJ, Nerem RM (1989) The study of rheological effects on vascular endothelial cells in culture. Biorheology 26:345–357

    PubMed  CAS  Google Scholar 

  23. Thornalley PJ (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems—role in ageing and disease. Drug Metabol Drug Interact 23:112–150

    Article  Google Scholar 

  24. Haberland ME, Fogelman AM, Edwards PA (1982) Specificity of receptor mediated recognition of malondialdehyde-modified low density lipoproteins. Proc Natl Acad Sci USA 79:7112

    Article  Google Scholar 

  25. Jakuš V, Rietbrock N (2004) Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res 53:131–142

    PubMed  Google Scholar 

  26. Öörni K, Pentikäinen MO, Ala-Korpela M, Kovanen PT (2000) Aggregation, fusion, and vesicle formation of modified low density lipoprotein particles: molecular mechanisms and effects on matrix interactions. J Lipid Res 41:1703–1714

    PubMed  Google Scholar 

  27. Hoff HF, Whitaker TE, O’Neil J (1992) Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition. J Biol Chem 267:602–609

    PubMed  CAS  Google Scholar 

  28. Hoff HF, Zyromsky N, Armstrong D, O’Neil J (1993) Aggregation as well as chemical modification of LDL during oxidation are responsible for poor processing in macrophages. J Lipid Res 34:1919–1929

    PubMed  CAS  Google Scholar 

  29. Kawabe Y, Cynshi O, Takashima Y et al (1994) Oxidation-induced aggregation of rabbit low-density lipoprotein by azo initiator. Arch Biochem Biophys 310:489–496

    Article  PubMed  CAS  Google Scholar 

  30. Steinbrecher UP, Lougheed M, Kwan WC, Dirks M (1989) Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apoprotein B by products of fatty acids peroxidation. J Biol Chem 264:15216–15223

    PubMed  CAS  Google Scholar 

  31. Pfafferott C, Meiselman HJ, Hochstein P (1982) The effect of malonyldialdehyde on erythrocyte deformability. Blood 59:12–15

    PubMed  CAS  Google Scholar 

  32. Jain SK, Mohandas N, Clark MR, Shohet SB (1983) The effect of malonyldialdehyde, a product of lipid peroxidation, on the deformability, dehydration, and 51Cr-survival of erythrocytes. Brit J Haematol 53:247–255

    Article  CAS  Google Scholar 

  33. Crepaldi G, Calabro A, Belloni M et al (1983) Blood hyperviscosity syndromes. Ric Clin Lab 13:89–104

    PubMed  Google Scholar 

  34. Oguz K, Gelmont D, Meiselman HJ (1998) Red blood cell deformability in sepsis. Am J Resp Crit Med 157:421–427

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research [Grant No. 13-04-01092].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena M. Kumskova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumskova, E.M., Antonova, O.A., Balashov, S.A. et al. Malonyldialdehyde and glyoxal act differently on low-density lipoproteins and endotheliocytes. Mol Cell Biochem 396, 79–85 (2014). https://doi.org/10.1007/s11010-014-2144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2144-x

Keywords

Navigation