Skip to main content

Advertisement

Log in

Induction of autophagy in human neuroblastoma SH-SY5Y cells by tri-ortho-cresyl phosphate

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Tri-ortho-cresyl phosphate (TOCP) is an organophosphorus ester and has been widely used in industry. It is found that TOCP induced delayed neurotoxicity in humans and sensitive animal species. However, the mechanism of TOCP-induced neural cytotoxicity remains unclear. In this study, we studied whether autophagy is involved in TOCP-induced neural cytotoxicity in human neuroblastoma SH-SY5Y cells. We found that 0.5 and 1.0 mM TOCP treatment significantly increased the ectopic accumulation of microtubule-associated protein 1 light chain 3 (LC3)-immunopositive puncta, Beclin 1, and LC3-II/LC3-I levels in SH-SY5Y cells in a dose-dependent manner. Notably, by monodansylcadaverine staining method, we found abundant punctate fluorescent acidic vesicular organelles in TOCP-treated cells. Furthermore, ultrastructural observation under the transmission electron microscope indicated that the cytoplasm was occupied by autophagosomes in TOCP-treated SH-SY5Y cells. Thus, these results suggest that TOCP may induce autophagy, and autophagy may be involved in the development of TOCP-induced neural cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AVOs:

Acidic vesicular organelles

ATG:

Autophagy gene

ECL:

Enhanced chemiluminescence

GFP:

Green fluorescent protein

LC3:

Microtubule-associated protein 1 light chain 3

MDC:

Monodansylcadaverine

PBS:

Phosphate-buffered saline

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

ST:

Starvation

TBS:

Tris-buffered saline

TOCP:

Tri-ortho-cresyl phosphate

References

  1. Craig PH, Barth ML (1999) Evaluation of the hazards of industrial exposure to tricresyl phosphate: a review and interpretation of the literature. J Toxicol Environ Health B Crit Rev 2:281–300

    Article  PubMed  CAS  Google Scholar 

  2. Winder C, Balouet JC (2002) The toxicity of commercial jet oils. Environ Res 89:146–164

    Article  PubMed  CAS  Google Scholar 

  3. Long DX, Wu YJ (2008) Growth inhibition and induction of G(1) phase cell cycle arrest in neuroblastoma SH-SY5Y cell by tri-ortho-cresyl phosphate. Toxicol Lett 181(1):47–52

    Article  PubMed  CAS  Google Scholar 

  4. Li Y, Piao F, Liu X (2013) Protective effect of taurine on triorthocresyl phosphate (TOCP)-induced cytotoxicity in C6 glioma cells. Adv Exp Med Biol 776:231–240

    Article  PubMed  CAS  Google Scholar 

  5. Somkuti SG, Lapadula DM, Chapin RE, Lamb JC 4th, Abou-Donia MB (1987) Reproductive tract lesions resulting from subchronic administration (63 days) of tri-o-cresyl phosphate in male rats. Toxicol Appl Pharmacol 89:49–63

    Article  PubMed  CAS  Google Scholar 

  6. Chapin RE, Phelps JL, Somkuti SG, Heindel JJ, Burka LT (1990) The interaction of Sertoli and Leydig cells in the testicular toxicity of tri-o-cresyl phosphate. Toxicol Appl Pharmacol 104:483–495

    Article  PubMed  CAS  Google Scholar 

  7. Chen JX, Xu LL, Mei JH, Yu XB, Kuang HB, Liu HY, Wu YJ, Wang JL (2012) Involvement of neuropathy target esterase in tri-ortho-cresyl phosphate-induced testicular spermatogenesis failure and growth inhibition of spermatogonial stem cells in mice. Toxicol Lett 211(1):54–61

    Article  PubMed  CAS  Google Scholar 

  8. Foil LD, Chambers HW, Stinson RS, Glick B (1980) Immunological aspects of tri-o-tolyl phosphate-induced delayed neurotoxicity in chickens. Toxicol Appl Pharmacol 56:259–264

    Article  PubMed  CAS  Google Scholar 

  9. Brinkerhoff CR, Sharma RP, Bourcier DR (1981) The effects of tri-o-tolyl phosphate (TOTP) on the immune system of mice. Ecotoxicol Environ Saf 5:368–376

    Article  PubMed  CAS  Google Scholar 

  10. Nanda S, Tapaswi PK (1995) Biochemical, neuropathological and behavioral studies in hens induced by acute exposure of tri-ortho-cresyl phosphate. Int J Neurosci 82(3–4):243–254

    Article  PubMed  CAS  Google Scholar 

  11. Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7:167–178

    Article  PubMed  CAS  Google Scholar 

  12. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y (2005) Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26(5):1401–1410

    PubMed  CAS  Google Scholar 

  13. Qian WB, Liu JQ, Jin J, Ni WM, Xu WL (2007) Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res 31:329–339

    Article  PubMed  Google Scholar 

  14. Klionsky DJ (2005) Autophagy. Curr Biol 15:R282–R283

    Article  CAS  Google Scholar 

  15. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12:1542–1552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Aredia F, Scovassi AI (2013) Manipulation of autophagy in cancer cells: an innovative strategy to fight drug resistance. Future Med Chem 5(9):1009–1021

    Article  PubMed  CAS  Google Scholar 

  17. Larsen KE, Sulzer D (2002) Autophagy in neurons: a review. Histol Histopathol 17:1–12

    Google Scholar 

  18. Rubinszstein DC, DiFiglia M, Heintz N, Nixon RA, Qin ZH, Ravikumar B, Stefanis L, Tolkovsky A (2005) Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1:11–22

    Article  Google Scholar 

  19. Nixon RA (2006) Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 29:528–535

    Article  PubMed  CAS  Google Scholar 

  20. Yu WH, Cuervo AM, Kumar A, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy: a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Zhu JH, Guo F, Shelburne J, Watkins S, Chu CT (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 13:473–481

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt–Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 36:2563–2573

    Article  PubMed  CAS  Google Scholar 

  23. Tarabal O, Caldero J, Casas C, Oppenheim RW, Esquerda JE (2005) Protein retention in the endoplasmic reticulum, blockade of programmed cell death and autophagy selectively occur in spinal cord motoneurons after glutamate receptor-mediated injury. Mol Cell Neurosci 29:283–298

    Article  PubMed  CAS  Google Scholar 

  24. Gao XF, Hai J, Du YP, Wang Q, Hui XP (2009) Cell proliferation inhibited by TIP-6 through autophagy in human hepatoma cell line HepG2 and human normal hepatocyte cell line L02. Chin J Cell Mol Immunol 25(10):883–886

    CAS  Google Scholar 

  25. Yin L, Huang YR, Chen HG, Wang YW, Xia L, Chen YH, Liu YD, Qiu F (2013) Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst 9:407–411

    Article  Google Scholar 

  26. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  27. Hong MS, Hong SJ, Barhoumi R, Burghardt RC, Donnelly KC, Wild JR, Venkatraj V, Tiffany-Castiglioni E (2003) Neurotoxicity induced in differentiated SK-N-SH-SY5Y human neuroblastoma cells by organophosphorus compounds. Toxicol Appl Pharmacol 186:110–118

    Article  PubMed  CAS  Google Scholar 

  28. Nostrandt AC, Ehrich M (1992) Development of a model cell culture system in which to study early effects of neuropathy-inducing organophosphorus esters. Toxicol Lett 60:107–114

    Article  PubMed  CAS  Google Scholar 

  29. Levine B, Kroemer G (2009) Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ 16(1):1–2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444

    PubMed  CAS  Google Scholar 

  31. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457

    Article  PubMed  CAS  Google Scholar 

  32. Pasquali L, Lazzeri G, Isidoro C, Ruggieri S, Paparelli A, Fornai F (2008) Role of autophagy during methamphetamine neurotoxicity. Ann NY Acad Sci 1139:191–196

    Article  PubMed  CAS  Google Scholar 

  33. Lee MS, Cherla RP, Jenson MH, Leyva-Illades D, Martinez-Moczygemba M, Tesh VL (2011) Shiga toxins induce autophagy leading to differential signaling pathways in toxin-sensitive and toxin-resistant human cells. Cell Microbiol 13:1479–1496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Yang Y, Fukui K, Koike T, Zheng XX (2007) Induction of autophagy in neurite degeneration of mouse superior cervical ganglion neurons. Eur J Neurosci 26:2979–2988

    Article  PubMed  Google Scholar 

  35. Chen JX, Sun YJ, Wang P, Long DX, Li W, Li L, Wu YJ (2013) Induction of autophagy by TOCP in differentiated human neuroblastoma cells lead to degradation of cytoskeletal components and inhibition of neurite outgrowth. Toxicology 310:92–97

    Article  PubMed  CAS  Google Scholar 

  36. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Liang XH, Yu J, Brown K, Levine B (2001) Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res 61:3443–3449

    PubMed  CAS  Google Scholar 

  38. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510

    Article  PubMed  CAS  Google Scholar 

  39. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502

    Article  PubMed  CAS  Google Scholar 

  40. Wang ZH, Xu L, Duan ZL, Zeng LQ, Yan NH, Peng ZL (2007) Beclin 1-mediated macroautophagy involves regulation of caspase-9 expression in cervical cancer HeLa cells. Gynecol Oncol 107:107–113

    Article  PubMed  CAS  Google Scholar 

  41. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Guo-Ross S, Yang E, Bondy SC (1998) Elevation of cerebral proteases after systemic administration of aluminum. Neurochem Int 33:277–282

    Article  PubMed  CAS  Google Scholar 

  43. Ray SK, Banik NL (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2:173–189

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grants from the National Natural Science Foundation of China (Nos. 81172712, 31071919), the Natural Science Foundation of Hunan Province, China (No. 11JJ6078), and the Youth Foundation of Education Bureau of Hunan Province, China (No. 09B087). We thank Mrs. X.-Q. Liu for her technical assistance with confocal microscopy.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Jun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, DX., Hu, D., Wang, P. et al. Induction of autophagy in human neuroblastoma SH-SY5Y cells by tri-ortho-cresyl phosphate. Mol Cell Biochem 396, 33–40 (2014). https://doi.org/10.1007/s11010-014-2139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2139-7

Keywords

Navigation