Skip to main content

Advertisement

Log in

TRAF4 participates in Wnt/β-catenin signaling in breast cancer by upregulating β-catenin and mediating its translocation to the nucleus

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tumor necrosis factor receptor-associated factor 4 (TRAF4) is upregulated in various subtypes of breast cancers and cell lines; however, the precise functions of TRAF4 are poorly understood. Our objective was to investigate its relationship with β-catenin. TRAF4 participates in several signaling pathways, such as NF-κB and JNK signaling pathways. In this study, we identified β-catenin as a TRAF4-binding protein, have shown that TRAF4 enhanced expression of β-catenin, and found that TRAF4 mediated the translocation of β-catenin from the cytoplasm to the nucleus, thereby facilitating activation of the Wnt signaling pathway in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kedinger V, Rio MC (2007) TRAF4, the unique family member. Adv Exp Med Biol 597:60–71

    Article  PubMed  Google Scholar 

  2. Incassati A, Chandramouli A, Eelkema R, Cowin P (2010) Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Res 12:213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Buechling T, Boutros M (2011) Wnt signaling signaling at and above the receptor level. Curr Top Dev Biol 97:21–53

    Article  CAS  PubMed  Google Scholar 

  5. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  6. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308:1181–1184

    Article  CAS  PubMed  Google Scholar 

  7. van Noort M, Weerkamp F, Clevers HC, Staal FJ (2007) Wnt signaling and phosphorylation status of betacatenin:importance of the correct antibody tools. Blood 110:2778–2779

    Article  PubMed  Google Scholar 

  8. Sedding DG (2008) FoxO transcription factors in oxidative stress response and ageing–a new fork on the way to longevity? Biol Chem 389:279–283

    Article  CAS  PubMed  Google Scholar 

  9. Rozan LM, El-Deiry WS (2006) Identification and characterization of proteins interacting with Traf4, an enigmatic p53 target. Cancer Biol Ther 5:1228–1235

    Article  CAS  PubMed  Google Scholar 

  10. Kalkan T, Iwasaki Y, Park CY, Thomsen GH (2009) Tumor necrosis factor-receptor associated factor-4 is a positive regulator of transforming growth factor-beta signaling that affects neural crest formation. Mol Biol Cell 20:3436–3450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zhang L, Zhou F, García de Vinuesa A, de Kruijf EM, Mesker WE, Hui L, Drabsch Y, Li Y, Bauer A, Rousseau A, Sheppard KA, Mickanin C, Kuppen PJ, Lu CX, Ten Dijke P (2013) TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. Mol Cell 51:559–572

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Jin C, Tang Y, Tang LY, Zhang YE (2013) Ubiquitination of tumor necrosis factor receptor associated factor 4 (TRAF4) by smad ubiquitination regulatory factor 1 (Smurf1) regulates motility of breast epithelial and cancer cells. J Biol Chem 288:21784–21792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Du Q, Geller DA (2011) Cross-regulation between Wnt and NF-κB signaling pathways. For Immunopathol Dis Therap 1:155–181

    Google Scholar 

  14. El-Masry OS, Brown BL, Dobson PR (2012) Effects of activation of AMPK on human breast cancer cell lines with different genetic backgrounds. Oncol Lett 3:224–228

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Dai WB, Zheng YW, Mi XY, Liu N, Lin H, Yan J (2007) Expression and significance of TRAF4 protein in breast carcinoma. Ai Zheng 26:1095–1098

    CAS  PubMed  Google Scholar 

  16. Kockeritz L, Doble B, Patel S, Woodgett JR (2006) Glycogen synthase kinase-3—an overview of an over-achieving protein kinase. Curr Drug Targets 7:1377–1388

    Article  CAS  PubMed  Google Scholar 

  17. Udhayakumar G, Jayanthi V, Devaraj N, Devaraj H (2007) Interaction of MUC1 with beta-catenin modulates the Wnt target gene cyclinD1 in H. pylori-induced gastric cancer. Mol Carcinog 46:807–817

    Article  CAS  PubMed  Google Scholar 

  18. Ziegler S, Röhrs S, Tickenbrock L, Möröy T, Klein-Hitpass L, Vetter IR, Müller O (2005) Novel target genes of the Wnt pathway and statistical insights into Wnt target promoter regulation. FEBS J 272:1600–1615

    Article  CAS  PubMed  Google Scholar 

  19. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23:41–46

    Article  CAS  PubMed  Google Scholar 

  20. Bièche I, Tomasetto C, Régnier CH, Moog-Lutz C, Rio MC, Lidereau R (1996) Two distinct amplified regions at 17q11-q21 involved in human primary breast cancer. Cancer Res 56:3886–3890

    PubMed  Google Scholar 

  21. Régnier CH, Tomasetto C, Moog-Lutz C, Chenard MP, Wendling C, Basset P, Rio MC (1995) Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem 270:25715–25721

    Article  PubMed  Google Scholar 

  22. Tomasetto C, Régnier C, Moog-Lutz C, Mattei MG, Chenard MP, Lidereau R, Basset P, Rio MC (1995) Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17. Genomics 28:367–376

    Article  CAS  PubMed  Google Scholar 

  23. Wu RF, Xu YC, Ma Z, Nwariaku FE, Sarosi GA Jr, Terada LS (2005) Subcellular targeting of oxidants during endothelial cell migration. J Cell Biol 171:893–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL, White RL, Matsunami N (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7:927–936

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Mi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Wang, J., Ren, H. et al. TRAF4 participates in Wnt/β-catenin signaling in breast cancer by upregulating β-catenin and mediating its translocation to the nucleus. Mol Cell Biochem 395, 211–219 (2014). https://doi.org/10.1007/s11010-014-2127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2127-y

Keywords

Navigation