Skip to main content

Advertisement

Log in

Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNA (miRNAs) is demonstrated to be present in the blood of humans and has been increasingly suggested as a novel biomarker for various pathological processes in the heart, including myocardial infarction, myocardial remodeling and progression to heart failure. In this study, we aim to evaluate the diagnostic and prognostic value of circulating miR-328 and miR-134 in patients with acute myocardial infarction (AMI). Circulating levels of miR-328 and miR-134 were detected by quantitative real-time PCR in plasma samples from 359 AMI patients and 30 healthy volunteers. Concentrations of high-sensitivity cardiac troponin T (hs-cTnT) were measured using electrochemiluminescence-based methods. MiRNAs were assessed for discrimination of a clinical diagnosis of AMI and for association with primary clinical endpoint defined as a composite of cardiogenic death and development of heart failure within 6 months after infarction. Results showed that levels of plasma miR-328 and miR-134 were significantly higher in AMI patients than in healthy controls. Receiver operating characteristic curve analyses showed significant diagnostic value of miR-328 and miR-134 for AMI. However, neither of them was superior to hs-cTnT for the diagnosis. Additionally, increased miRNA levels were strongly associated with increased risk of mortality or heart failure within 6 months for miR-328 (OR 7.35, 95 % confidence interval 1.07–17.83, P < 0.001) and miR-134 (OR 2.28, 95 % confidence interval 1.03–11.32 P < 0.001). In conclusion, circulating miR-328 and miR-134 could be potential indicators for AMI, and the miRNA levels are associated with increased risk of mortality or development of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

miRNAs:

MicroRNAs

AMI:

Acute myocardial infarction

hs-cTnT:

High-sensitivity cardiac troponin T

NT-proBNP:

N-terminal pro-brain natriuretic peptide

References

  1. Hori M, Nishida K (2009) Oxidative stress and left ventricular remodeling after myocardial infarction. Cardiovasc Res 81:457–464

    Article  CAS  PubMed  Google Scholar 

  2. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988

    Article  CAS  PubMed  Google Scholar 

  3. White HD, Chew DP (2008) Acute myocardial infarction. Lancet 372:570–584

    Article  CAS  PubMed  Google Scholar 

  4. Jaffe AS, Ravkilde J, Roberts R et al (2000) It’s time for a change to a troponin standard. Circulation 102:1216–1220

    Article  CAS  PubMed  Google Scholar 

  5. Reichlin T, Hochholzer W, Bassetti S et al (2009) Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med 361:858–867

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Meltzer PS (2005) Cancer genomics: small RNAs with big impacts. Nature 435:745–746

    Article  CAS  PubMed  Google Scholar 

  9. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91:827–887

    Article  CAS  PubMed  Google Scholar 

  10. Gilad S, Meiri E, Yogev Y et al (2008) Serum microRNAs are promising novel biomarkers. PLoS ONE 3:e3148

    Article  PubMed Central  PubMed  Google Scholar 

  11. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38:7248–7259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kuwabara Y, Ono K, Horie T et al (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4:446–454

    Article  CAS  PubMed  Google Scholar 

  15. Corsten MF, Dennert R, Jochems S et al (2010) Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506

    Article  PubMed  Google Scholar 

  16. Devaux Y, Vausort M, Goretti E et al (2012) Use of circulating microRNAs to diagnose acute myocardial infarction. Clin Chem 58:559–567

    Article  CAS  PubMed  Google Scholar 

  17. D’Alessandra Y, Devanna P, Limana F et al (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31:2765–2773

    Article  PubMed Central  PubMed  Google Scholar 

  18. Turchinovich A, Weiz L, Langheinz A et al (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Long G, Wang F, Duan Q et al (2012) Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLoS ONE 7:e50926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hoekstra M, van der Lans CA, Halvorsen B et al (2010) The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun 394(3):792–797

    Article  CAS  PubMed  Google Scholar 

  21. Long G, Wang F, Duan Q et al (2012) Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci 8:811–818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang R, Li N, Zhang Y et al (2011) Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Intern Med 50:1789–1795

    Article  CAS  PubMed  Google Scholar 

  23. Thygesen K, Alpert JS, Jaffe AS et al (2012) Third universal definition of myocardial infarction. Eur Heart J 33:2551–2567

    Article  PubMed  Google Scholar 

  24. Grundy SM, Cleeman JI, Bairey CN et al (2004) Implications of recent clinical trials for the national cholesterol education pro-gram adult treatment panel III guidelines. Circulation 110:227–239

    Article  PubMed  Google Scholar 

  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  26. Lainscak M, Anker MS, von Haehling S et al (2009) Biomarkers for chronic heart failure: diagnostic, prognostic, and therapeutic challenges. Herz 34:589–593

    Article  PubMed  Google Scholar 

  27. Manzano-Fernández S, Boronat-Garcia M, Albaladejo-Otón MD et al (2009) Complementary prognostic value of cystatin C, N-terminal pro-B-type natriuretic Peptide and cardiac troponin T in patients with acute heart failure. Am J Cardiol 103:1753–1759

    Article  PubMed  Google Scholar 

  28. Tijsen AJ, Pinto YM, Creemers EE (2012) Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 303:H1085–H1095

    Article  CAS  PubMed  Google Scholar 

  29. Gao Y, Schug J, McKenna LB et al (2011) Tissue-specific regulation of mouse microRNA genes in endoderm-derived tissues. Nucleic Acids Res 39:454–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Meder B, Keller A, Vogel B et al (2011) MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106(1):13–23

    Article  CAS  PubMed  Google Scholar 

  31. Fichtlscherer S, De Rosa S, Fox H et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684

    Article  CAS  PubMed  Google Scholar 

  32. Lu Y, Zhang Y, Wang N et al (2010) MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122(23):2378–2387

    Article  CAS  PubMed  Google Scholar 

  33. Delic S, Lottmann N, Stelzl A et al (2014) MiR-328 promotes glioma cell invasion via SFRP1-dependent Wnt-signaling activation. Neuro Oncol 16(2):179–190

    Article  CAS  PubMed  Google Scholar 

  34. Arora S, Ranade AR, Tran NL et al (2011) MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer 129(11):2621–2631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Li C, Li X, Gao X et al (2014) MicroRNA-328 as a regulator of cardiac hypertrophy. Int J Cardiol 173(2):268–276

    Article  PubMed  Google Scholar 

  36. Miyamoto MI, del Monte F, Schmidt U et al (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 97(2):793–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kumarswamy R, Lyon AR, Volkmann I et al (2012) SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J 33(9):1067–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wiesen JL, Tomasi TB (2009) Dicer is regulated by cellular stresses and interferons. Mol Immunol 46:1222–1228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Key Project of the Scientific and Technological Department of Henan (No. 122102310226). We express our sincere appreciation to all members of our laboratory for helpful discussions and comments on the manuscript. We also thank Yanmei Ma and Xinfeng Chen for expert technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucheng He.

Additional information

Fucheng He and Pin Lv have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Lv, P., Zhao, X. et al. Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Mol Cell Biochem 394, 137–144 (2014). https://doi.org/10.1007/s11010-014-2089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2089-0

Keywords

Navigation