Skip to main content

Advertisement

Log in

Some findings of FADD knockdown in inhibition of HIV-1 replication in Jurkat cells and PBMCs

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Fas-associated protein with death domain (FADD) is a key adaptor molecule transmitting the death signal mediated by death receptors, and it is also required for T cell proliferation. A recent study indicated that FADD is able to affect HIV-1 production, but the mechanism is not known. Using the susceptible Jurkat cell line and peripheral blood mononuclear cells, we studied the effects of FADD on HIV-1 production. TaqMan RT-PCR was used to quantify HIV-1 viral RNA copies, and Western blot analysis was used to detect protein expression. FADD knockdown decreased HIV-1 replication and inactivated caspase-3 activity in the cells and blocked CD4 translocation to the lipid rafts of the plasma membrane. Reduced expression of FADD suppressed TCR signaling through downregulation of TCR, CD3, and Zap-70 in response to HIV-1 infection and blocked the trafficking of TCR, CD3, CD28, and Zap-70 to lipid rafts, leading to reduced activation of NF-κB and NFAT, which are required for HIV-1 replication. FADD knockdown diminished caspase-8 migration to lipid rafts and its expression in response to HIV-1 infection. These results indicate that FADD, as a host pro-apoptotic protein, plays important roles in regulating HIV-1 replication and production in several ways, and apoptotic pathway inhibition is able to decrease HIV-1 replication and production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ganser-Pornillos BK, Yeager M, Pornillos O (2012) Assembly and architecture of HIV. Adv Exp Med Biol 726:441–465

    Article  CAS  PubMed  Google Scholar 

  2. Moss JA (2013) HIV/AIDS review. Radiol Technol 84:247–267

    PubMed  Google Scholar 

  3. Cummins NW, Badley AD (2010) Mechanisms of HIV-associated lymphocyte apoptosis: 2010. Cell Death Dis 1:e99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Silvestris F, Cafforio P, Frassanito MA, Tucci M, Romito A, Nagata S, Dammacco F (1996) Overexpression of Fas antigen on T cells in advanced HIV-1 infection: differential ligation constantly induces apoptosis. AIDS 10:131–141

    Article  CAS  PubMed  Google Scholar 

  5. Sloand EM, Maciejewski JP, Sato T, Bruny J, Kumar P, Kim S, Weichold FF, Young NS (1998) The role of interleukin-converting enzyme in Fas-mediated apoptosis in HIV-1 infection. J Clin Invest 101:195–201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Balestrieri E, Grelli S, Matteucci C, Minutolo A, d’Ettorre G, Di Sora F, Montella F, Vullo V, Vella S, Favalli C, Macchi B, Mastino A (2007) Apoptosis-associated gene expression in HIV-infected patients in response to successful antiretroviral therapy. J Med Virol 79:111–117

    Article  CAS  PubMed  Google Scholar 

  7. O’Brien MA (2008) Apoptosis: a review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care 18:572–585

    Article  Google Scholar 

  8. Walsh CM, Wen BG, Chinnaiyan AM, O’Rourke K, Dixit VM, Hedrick SM (1998) A role for FADD in T cell activation and development. Immunity 8:439–449

    Article  CAS  PubMed  Google Scholar 

  9. Newton K, Harris AW, Strasser A (2000) FADD/MORT1 regulates the pre-TCR check point and can function as a tumour suppressor. EMBO J 19:931–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kabra NH, Kang C, Hsing LC, Zhang J, Winoto A (2001) T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc Natl Acad Sci USA 98:6307–6312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE, Thorburn A, Kidd VJ, Slaughter CA, Osborn SL, Winoto A, Tang W, Peter ME (2005) Phosphorylation of FADD at serine 194 by CKIα regulates its nonapoptotic activities. Mol Cell 19:321–332

    Article  CAS  PubMed  Google Scholar 

  12. Schinske KA, Nyati S, Khan AP, Williams TM, Johnson TD, Ross BD, Tomás RP, Rehemtulla A (2011) A novel kinase inhibitor of FADD phosphorylation chemosensitizes through the inhibition of NF-κB. Mo. Cancer Ther 10:1807–1817

    Article  CAS  Google Scholar 

  13. Chen G, Bhojani, Heaford AC, Chang DC, Laxman B, Thomas DG, Griffin LB, Yu J, Coppola JM, Lin L, Adams D, Orringer MB, Ross BD, Beer DG, Rehemtulla A (2005) Phosphorylated FADD induces NF-κB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc Natl Acad Sci USA 102:12507–12512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Cheng J, Montecalvo A, Kane LP (2011) Regulation of NF-κB induction by TCR/CD28. Immuno Res 50:113–117

    Article  CAS  Google Scholar 

  15. Luo C, Wang K, Liu D, Li Y, Zhao Q (2008) The functional roles of lipid rafts in T cell activation, immune diseases and HIV infection and prevention. Cell Mol Immunol 5:1–7

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Viswanath R, Zhao J, Hewlett I (2011) Molecules from apoptotic pathways modulate HIV-1 replication in Jurkat cells. Biochem Biophys Res Commun 414:20–24

    Article  CAS  PubMed  Google Scholar 

  17. Gupta P, Singhal PK, Rajendrakumar P, Padwad Y, Tendulkar AV, Kalyanaraman VS, Schmidt RE, Srinivasan A, Mahalingam S (2011) Mechanism of host cell MAPK/ERK-2 incorporation into lentivirus particles: characterization of the interaction between MAPK/ERK-2 and proline-rich-domain containing capsid region of structural protein Gag. J Mol Biol 410:681–697

    Article  CAS  PubMed  Google Scholar 

  18. Gong J, Shen XH, Chen C, Qiu H, Yang RG (2011) Down-regulation of HIV-1 infection by inhibition of the MAPK signaling pathway. Virol Sin 26:114–122

    Article  CAS  PubMed  Google Scholar 

  19. Zhang HS, Sang WW, Ruan Z, Wang YO (2010) Akt/Nox2/NF-κB signaling pathway is involved in Tat-induced HIV-1 long terminal repeat (LTR) transactivation. Chin Med J 123:2440–2445

    Google Scholar 

  20. Farrow MA, Kim EY, Wolinsky SM, Sheehy AM (2011) NFAT and IRF proteins regulate transcription of the anti-HIV gene, APOBEC3G. J Biol Chem 286:2567–2577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang X, Viswanath R, Zhao J, Tang S, Hewlett I (2010) Changes in the level of apoptosis-related proteins in Jurkat cells infected with HIV-1 versus HIV-2. Mol Cell Biochem 337:175–183

    Article  CAS  PubMed  Google Scholar 

  22. Su H, Bidère N, Zheng L, Cubre A, Sakai K, Dale J, Salmena L, Hakem R, Straus S, Lenardo M (2005) Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science 307:1465–1468

    Article  CAS  PubMed  Google Scholar 

  23. Bren GD, Trushin SA, Whitman J, Shepard B, Badley AD (2009) HIV gp120 induces, NF-kappaB dependent, HIV replication that requires procaspase 8. PLoS ONE 4:e4875

    Article  PubMed Central  PubMed  Google Scholar 

  24. Misra RS, Russell JQ, Koenig A, Hinshaw-Makepeace JA, Wen R, Wang D, Huo H, Littman DR, Ferch U, Ruland J, Thome M, Budd RC (2007) Caspase-8 and c-FLIPL associate in lipid rafts with NF-kappaB adaptors during T cell activation. J Biol Chem 282:19365–19374

    Article  CAS  PubMed  Google Scholar 

  25. Pietiäinen VM, Marjomäki V, Heino J, Hyypiä T (2005) Viral entry, lipid rafts and caveosomes. Ann Med 37:394–403

    Article  PubMed  Google Scholar 

  26. Hiscott J, Kwon H, Genin P (2001) Hostile takeovers: viral appropriation of the NF-kB pathway. J Clin Invest 107:143–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Marwali MR, MacLeod MA, Muzia DN, Takei F (2004) Lipid rafts mediate association of LFA-1 and CD3 and formation of the immunological synapse of CTL. J Immunol 173:2960–2967

    Article  CAS  PubMed  Google Scholar 

  28. Huang SC, Tsai HF, Tzeng HT, Liao HJ, Hsu PN (2011) Lipid raft assembly and Lck recruitment in TRAIL costimulation mediates NF-κB activation and T cell proliferation. J Immunol 186:931–939

    Article  CAS  PubMed  Google Scholar 

  29. Hashimoto-Tane A, Yokosuka T, Ishihara C, Sakuma M, Kobayashi W, Saito T (2010) T-cell receptor microclusters critical for T-cell activation are formed independently of lipid raft clustering. Mol Cell Biol 30:3421–3429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Szabo M, Czompoly T, Kvell K, Talaber G, Bartis D, Nemeth P, Berki T, Boldizsar F (2012) Fine-tuning of proximal TCR signaling by ZAP-70 tyrosine residues in Jurkat cells. Int Immunol 24:79–87

    Article  CAS  PubMed  Google Scholar 

  31. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91

    Article  CAS  PubMed  Google Scholar 

  32. Balasubramaniam M, Freed EO (2011) New insights into HIV assembly and trafficking. Physiology (Bethesda) 26:236–251

    Article  CAS  Google Scholar 

  33. Weiss ER, Göttlinger H (2011) The role of cellular factors in promoting HIV budding. J Mol Biol 410:525–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chan D, Kim P (1998) HIV entry and its inhibition. Cell 93:681–684

    CAS  Google Scholar 

  35. Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280:1884–1888

    Article  CAS  PubMed  Google Scholar 

  36. Sebban H, Yamaoka S, Courtois G (2006) Posttranslational modifications of NEMO and its partners in NF-kappaB signaling. Trends Cell Biol 16:569–577

    Article  CAS  PubMed  Google Scholar 

  37. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    CAS  PubMed  Google Scholar 

  38. Bidere N, Snow AL, Sakai K, Zheng L, Lenardo MJ (2006) Caspase-8 regulation by direct interaction with TRAF6 in T cell receptor induced NF-kappaB activation. Curr Biol 16:1666–1671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. Mingjie Zhang, Dr Cheng Sun, and Ewan Plant for critical review of this manuscript. The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Wang or Indira Hewlett.

Additional information

Xue Wang and Jiying Tan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2014_2058_MOESM1_ESM.ppt

A. No significant effect of Adenovirus containing LacZ on HIV-1 production in Jurkat cells. To investigate whether adenovirus containing LacZ affects HIV-1 production, Jurkat cells were infected with HIV-1 (MN) for 2 hours, and then incubated with/without adenovirus inserted a gene, LacZ, and cultured for 3 days. One hundred forty µl of the culture supernatants containing HIV-1 particles were used to isolate viral RNA. Five µl in 50 µl of the RNA was used as template to perform real-time PCR. Statistically, as shown in Fig. A, there was no significant difference of HIV-1 production between the treatments of HIV-1 infection and HIV-1 + adenovirus containing LacZ. B. Lipid rafts and caveolae are plasma membrane domains that are enriched in cholesterol and sphingolipid. Both lipid rafts and caveolae are docking sites for specific proteins involved in signal transduction. Caveolae are a specialised form of lipid raft, defined by the presence of a specific cellular protein marker, caveolin. The term ‘lipid rafts’ reflects the ability of these microdomains to serve as relay stations in intracellular signaling pathways or as vehicles for the transport of selected lipid membrane molecules.Jurkat cells infected HIV-1 for 2 hours, and then incubated with adenovirus inserted a gene LacZ or anti-sense FADD for 3 days. Total cell lysates were loaded on the discontinuous sucrose gradients for 18 h (39,000 rpm, SW 41 rotor). Twelve fractions of each were obtained and subjected to Western blot analysis for Flotillin-1. Flotillins are lipid raft components, and belongs to stomatin protein family, whose members are characterized by the presence of a hydrophobic N-terminal region that is predicted to form a single, outside to inside, transmembrane domain. (PPT 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Tan, J., Zhao, J. et al. Some findings of FADD knockdown in inhibition of HIV-1 replication in Jurkat cells and PBMCs. Mol Cell Biochem 393, 181–190 (2014). https://doi.org/10.1007/s11010-014-2058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2058-7

Keywords

Navigation