Skip to main content
Log in

Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone H2A in vivo

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The primary structure of Histone Acetyltransferase 1 (Hat1) has been conserved throughout evolution; however, despite its ubiquity, its cellular function is not well characterized. To study its in vivo acetylation pattern and function, we utilized shRNAmir against Hat1 expressed in the well-substantiated HeLa (human cervical cancer) cell line. To reduce the interference by enzymes with similar HAT specificity, we used HeLa cells expressing histone acetyltransferase Tip60 with mutated acetyl-CoA binding site that abrogates its enzyme activity (mutant HeLa-tip60). Two shRNAmir were identified that reduced the expression of the cytoplasmic and nuclear forms of Hat1. Cytosolic protein preparations from these two clones showed decreased levels of acetylation of lysine 5 (K5) and K12 on histone H4, with the concomitant loss of the acetylation of histone H2A at K5. This pattern of decreased acetylation of H2AK5 was well defined in preparations of histone protein and insoluble nuclear-protein (INP) fractions as well. Abrogating the Hat1 expression caused a 74 % decrease in colony-forming efficiency of mutant HeLa-tip60 cells, reduced the size of the colonies by 50 %, and decreased the amounts of proteins with molecular weights below 35 kDa in the INP fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kleff S, Andrulis ED, Anderson CW, Sternglanz R (1995) Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 270:24674–24677

    Article  CAS  PubMed  Google Scholar 

  2. Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94

    Article  CAS  PubMed  Google Scholar 

  3. Verreault A, Kaufman PD, Kobayashi R, Stillman B (1998) Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8:96–108

    Article  CAS  PubMed  Google Scholar 

  4. Parthun MR (2007) HAT1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26:5319–5328

    Article  CAS  PubMed  Google Scholar 

  5. Parthun MR (2012) Histone acetyltransferase 1: more than just an enzyme? Biochim Biophys Acta 1819:256–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lebel EA, Boukamp P, Tafrov ST (2010) Irradiation with heavy-ion particles changes the cellular distribution of human histone acetyltransferase HAT1. Mol Cell Biochem 339:271–284

    Article  CAS  PubMed  Google Scholar 

  7. Zhang H, Han J, Kang B, Burgess R, Zhang Z (2012) Human histone acetyltransferase 1 protein preferentially acetylates H4 histone molecules in H3.1-H4 over H3.3-H4. J Biol Chem 287:6573–6581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WH, Seepany H, Gao Z, Day LA, Greenblatt JF, Reinberg D (2010) The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 17:1343–1351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dutnall RN, Tafrov ST, Sternglanz R, Ramakrishnan V (1998) Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94:427–438

    Article  CAS  PubMed  Google Scholar 

  10. Wu H, Moshkina N, Min J, Zeng H, Joshua J, Zhou MM, Plotnikov AN (2012) Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1. Proc Natl Acad Sci USA 109:8925–8930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kimura A, Horikoshi M (1998) Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells 3:789–800

    Article  CAS  PubMed  Google Scholar 

  12. Wang J, Chen J (2010) SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60. J Biol Chem 285:11458–11464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sun Y, Xu Y, Roy K, Price BD (2007) DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Mol Cell Biol 27:8502–8509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839

    Article  CAS  PubMed  Google Scholar 

  15. Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–473

    Article  CAS  PubMed  Google Scholar 

  16. Qin S, Parthun MR (2002) Histone H3 and the histone acetyltransferase Hat1p contributes to DNA double-strand break repair. Mol Cell Biol 22:8353–8365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Qin S, Parthun MR (2006) Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol Cell Biol 26:3649–3658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hada M, Sutherland BM (2006) Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 165:223–230

    Article  CAS  PubMed  Google Scholar 

  19. Zhu Z, Ma B, Homer RJ, Zheng T, Elias JA (2001) Use of the tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem 276:25222–25229

    Article  CAS  PubMed  Google Scholar 

  20. Benson LJ, Phillips JA, Gu Y, Parthun MR, Hoffman CS, Annunziato AT (2007) Properties of the type B histone acetyltransferase Hat1:H4 tail interaction, site preference, and involvement in DNA repair. J Biol Chem 282:836–842

    Article  CAS  PubMed  Google Scholar 

  21. Tong K, Keller T, Hoffman CS, Annunziato AT (2012) Schizosaccharomyces pombe Hat1 (Kat1) is associated with Mis16 and is required for telomeric silencing. Eukaryot Cell 11:1095–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kelly TJ, Qin S, Gottschling DE, Parthun MR (2000) Type B histone acetyltransferase Hat1p participates in telomeric silencing. Mol Cell Biol 20:7051–7058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Barman HK, Takami Y, Ono T, Nishijima H, Sanematsu F, Shibahara K, Nakayama T (2006) Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells. Biochem Biophys Res Commun 345:1547–1557

    Article  CAS  PubMed  Google Scholar 

  24. Suter B, Pogoutse O, Guo X, Krogan N, Lewis P, Greenblatt JF, Rine J, Emili A (2007) Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p. BMC Biol 5:38

    Article  PubMed Central  PubMed  Google Scholar 

  25. Rosaleny LE, Antúnez O, Ruiz-García AB, Pérez-Ortín JE, Tordera V (2005) Yeast HAT1 and HAT2 deletions have different life-span and transcriptome phenotypes. FEBS Lett 579:4063–4068

    Article  CAS  PubMed  Google Scholar 

  26. Nagarajan P, Ge Z, Sirbu B, Doughty C, Agudelo Garcia PA, Schlederer M, Annunziato AT, Cortez D, Kenner L, Parthun MR (2013) Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4. PLoS Genet 9:e1003518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gong F, Miller KM (2013) Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutat Res 750:23–30

    Article  CAS  PubMed  Google Scholar 

  28. Coffey K, Blackburn TJ, Cook S, Golding BT, Griffin RJ, Hardcastle IR, Hewitt L, Huberman K, McNeill HV, Newell DR, Roche C, Ryan-Munden CA, Watson A, Robson CN (2012) Characterization of a Tip60 specific inhibitor, NU9056, in prostate cancer. PLoS ONE 7:e45539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hu R, Wang E, Peng G, Dai H, Lin SY (2013) Zinc finger protein 668 interacts with Tip60 to promote H2AX acetylation after DNA damage. Cell Cycle 12:2033–2041

    Article  CAS  PubMed  Google Scholar 

  30. Albig W, Kardalinou E, Drabent B, Zimmer A, Doenecke D (1991) Isolation and characterization of two human H1 histone genes within clusters of core histone genes. Genomics 10:940–948

    Article  CAS  PubMed  Google Scholar 

  31. Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12:162–169

    Article  CAS  PubMed  Google Scholar 

  32. Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, Yoder K, Izumi S, Kuraoka I, Tanaka K, Kimura H, Ikura M, Nishikubo S, Ito T, Muto A, Miyagawa K, Takeda S, Fishel R, Igarashi K, Kamiya K (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol 27:7028–7040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kafri T, van Praag H, Gage FH, Verma IM (2000) Lentiviral vectors: regulated gene expression. Mol Ther 1:516–521

    Article  CAS  PubMed  Google Scholar 

  34. Bian Q, Belmont AS (2010) BAC TG-EMBED: one-step method for high-level, copy-number-dependent, position-independent transgene expression. Nucleic Acids Res 38:e127

    Article  PubMed Central  PubMed  Google Scholar 

  35. Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W, de Ridder J, Berns A, Wessels LFA, van Lohuizen M, van Steense B (2013) Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 154:914–927

    Article  CAS  PubMed  Google Scholar 

  36. Agha-Mohammadi S, O’Malley M, Etemad A, Wang Z, Xiao X, Lotze MT (2004) Second-generation tetracycline-regulatable promoter: repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. J Gene Med 6:817–828

    Article  CAS  PubMed  Google Scholar 

  37. Liu WH, Churchill MEA (2012) Histone transfer among chaperones. Biochem Soc Trans 40:357–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Burgess RJ, Zhang Z (2013) Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 20:14–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sutherland BM, Bennett PV, Sidorkina O, Laval J (2000) Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc Natl Acad Sci USA 97:103–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hunt CR, Ramnarain D, Horikoshi N, Iyengar P, Pandita RK, Shay JW, Pandita TK (2013) Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat Res 179:383–392

    Article  CAS  PubMed  Google Scholar 

  41. Ejlassi-Lassallette A, Thiriet C (2012) Replication-coupled chromatin assembly of newly synthesized histones: distinct functions for the histone tail domains. Biochem Cell Biol 90:14–21

    CAS  PubMed  Google Scholar 

  42. Ottaviani D, Lever E, Takousis P, Sheer D (2008) Anchoring the genome. Genome Biol 9:201

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Avril Woodhead for her critical help with the manuscript preparation and Dr. Rolf Sternglanz for the invaluable support, discussions, and comments throughout the years. We would like to thank Dr. David Schlyer, Dr. John Shanklin, and the entire Biosciences Department for the support; and Dr. Tsuyoshi Ikura for providing the HeLa-TIP60 and HeLa-tip60 cell lines. This article has been authored by Brookhaven Science Associates, LLC under contract number DE-AC02-98CH10886 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This work was supported by a grant from the National Aeronautics and Space Administration NNJ08HB63I under Department of Energy Prime Contract DE-AC02-98CH10886 with the Brookhaven National Laboratory (to STT).

Conflicts of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan T. Tafrov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 897 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tafrova, J.I., Tafrov, S.T. Human histone acetyltransferase 1 (Hat1) acetylates lysine 5 of histone H2A in vivo. Mol Cell Biochem 392, 259–272 (2014). https://doi.org/10.1007/s11010-014-2036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2036-0

Keywords

Navigation