Skip to main content
Log in

The siRNA-mediated downregulation of N-Ras sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The clinical benefit of selective BRAF inhibitor therapies is limited by the emergence of drug resistance. Here, we investigated the molecular basis underlying the acquired resistance to a BRAF inhibitor by comparing the signaling pathways in the parental A375P cells and the resistant subline (A375P/Mdr). We demonstrate that MAPK re-activation does not contribute to the mechanism of resistance to UAI-201 of A375P/Mdr cells. The relative quantitative analysis using the 2−ΔΔCt method revealed that the BRAF inhibitor resistance observed in A375P/Mdr cells is not mediated through the overexpression of MDR proteins. In particular, we found that the expression of N-Ras was upregulated in BRAF inhibitor-resistant A375P/Mdr cells compared with A375P cells. In fact, siRNA-mediated N-Ras knockdown partially conferred UAI-201 sensitivity to A375P/Mdr cells, implying that N-Ras upregulation confers acquired resistance to BRAF inhibition. Notably, the flow cytometric analysis of the N-Ras-knockdown A375P/Mdr cells revealed that UAI-201 causes a significant accumulation of cells in the G 0/G 1 phase with a concomitant decrease in the number of cells in the S and G 2/M phases. However, platelet-derived growth factor receptor β (PDGFRβ) knockdown failed to sensitize A375P/Mdr cells to growth suppression by UAI-201, although a remarkable increase in PDGFRβ was observed in the A375P cells after UAI-201 treatment. Taken together, our results suggest that N-Ras is worth targeting to improve the therapeutic outcome of melanomas with acquired resistance to BRAF inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davies H, Bignell G, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al (2002) Mutations of the B-Raf gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  2. Karasarides M, Chiloeches A, Hayward R, Niculescu-Duvaz D, Scanlon I, Friedlos F, Ogilvie L, Hedley D, Martin J, Marshall CJ et al (2004) B-RAF is a therapeutic target in melanoma. Oncogene 23:6292–6298

    Article  CAS  PubMed  Google Scholar 

  3. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109

    Article  CAS  PubMed  Google Scholar 

  4. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK et al (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105:3041–3046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ahn J-H, Ahn SK, Lee M (2012) The role of autophagy in cytotoxicity induced by new oncogenic B-Raf inhibitor UI-152 in v-Ha-ras transformed fibroblasts. Biochem Biophys Res Commun 417:857–863

    Article  CAS  PubMed  Google Scholar 

  6. Kim Y-K, Ahn SK, Lee M (2012) Differential sensitivity of melanoma cell lines with differing B-Raf mutational status to the new oncogenic B-Raf kinase inhibitor UI-152. Cancer Lett 320:215–224

    Article  CAS  PubMed  Google Scholar 

  7. Engelman JA, Jänne PA (2008) Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 14:2895–2899

    Article  PubMed  Google Scholar 

  8. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    Article  PubMed Central  PubMed  Google Scholar 

  9. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:819–908

    Article  Google Scholar 

  10. Callaghan R, Higgins CF (1995) Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Br J Cancer 71:294–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  CAS  PubMed  Google Scholar 

  12. Wu CP, Calcagno AM, Ambudkar SV (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr Mol Pharmacol 1:93–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Goldstein LJ, Galski H, Fojo A, Willingham M, Lai SL, Gazdar A, Pirker R, Green A, Crist W, Brodeur GM et al (1989) Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 81:116–124

    Article  CAS  PubMed  Google Scholar 

  14. Ahn J-H, Lee M (2013) Autophagy-dependent survival of mutant B-Raf melanoma cells selected for resistance to apoptosis induced by inhibitors against oncogenic B-Raf. Biomol Ther 21:114–120

    Article  CAS  Google Scholar 

  15. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−DDCt Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  18. Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, Ryder M, Ghossein RA, Rosen N, Fagin JA (2013) Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov 3:520–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Little AS, Balmanno K, Sale MJ, Newman S, Dry JR, Hampson M, Edwards PA, Smith PD, Cook SJ (2011) Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Sci Signal 4:17–21

    Google Scholar 

  20. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2A10058897).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, JH., Lee, M. The siRNA-mediated downregulation of N-Ras sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors. Mol Cell Biochem 392, 239–247 (2014). https://doi.org/10.1007/s11010-014-2034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2034-2

Keywords

Navigation