Skip to main content
Log in

The overexpression of MCPH1 inhibits cell growth through regulating cell cycle-related proteins and activating cytochrome c-caspase 3 signaling in cervical cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MCPH1, initially identified as an hTERT repressor, has recently been implicated in mediating DNA damage response and maintaining chromosome integrity. This study is to investigate its potential role in the onset of cervical cancer. In the study, decreased expression of MCPH1 was observed in 19 of 31 cases (61.3 %) at mRNA level and 44 of 63 cases (69.8 %) at protein level of cervical tumor tissues compared with the paired nontumor tissues. Reduced MCPH1 protein expression was significantly associated with high-tumor grade (1 vs. 3 P = 0.013; 2 vs. 3 P = 0.047). In addition to inhibit SiHa cell migration and invasion, the overexpression of MCPH1 inhibited cervical cancer cells growth through inducing S phase arrest and mitochondrial apoptosis. Further analysis demonstrated cyclinA2/CDK2, CDC25C-cyclinB/CDC2, and p53/p21 pathways were involved in the MCPH1 overexpression-induced S phase arrest. Moreover, the overexpression of MCPH1 activated mitochondrial apoptosis through regulating several apoptosis-related proteins such as p53, Bcl-2, Bax, cytochrome c, caspase-3, and PARP-1. Our findings indicate that downregulated MCPH1 correlates with tumor progression in cervical cancer, and MCPH1 has an important role in regulating cell growth through regulating the cell cycle and apoptosis. Thus, it may be a crucial tumor suppressor gene and a novel candidate therapeutic target for cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  2. Duenas-Gonzalez A, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E (2005) Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol cancer 4:38. doi:10.1186/1476-4598-4-38

    Article  PubMed Central  PubMed  Google Scholar 

  3. Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, Roberts E, Hampshire DJ, Crow YJ, Mighell AJ, Karbani G, Jafri H, Rashid Y, Mueller RF, Markham AF, Woods CG (2002) Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 71(1):136–142. doi:10.1086/341283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lin SY, Liang Y, Li K (2010) Multiple roles of BRIT1/MCPH1 in DNA damage response, DNA repair, and cancer suppression. Yonsei Med J 51(3):295–301. doi:10.3349/ymj.2010.51.3.295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Manke IA, Lowery DM, Nguyen A, Yaffe MB (2003) BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302(5645):636–639. doi:10.1126/science.1088877

    Article  CAS  PubMed  Google Scholar 

  6. Yu X, Chini CC, He M, Mer G, Chen J (2003) The BRCT domain is a phospho-protein binding domain. Science 302(5645):639–642. doi:10.1126/science.1088753

    Article  CAS  PubMed  Google Scholar 

  7. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323. doi:10.1038/nature03097

    Article  CAS  PubMed  Google Scholar 

  8. Xu X, Lee J, Stern DF (2004) Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1. J Biol Chem 279(33):34091–34094. doi:10.1074/jbc.C400139200

    Article  CAS  PubMed  Google Scholar 

  9. Lin SY, Rai R, Li K, Xu ZX, Elledge SJ (2005) BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc Natl Acad Sci USA 102(42):15105–15109. doi:10.1073/pnas.0507722102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Rai R, Dai H, Multani AS, Li K, Chin K, Gray J, Lahad JP, Liang J, Mills GB, Meric-Bernstam F, Lin SY (2006) BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 10(2):145–157. doi:10.1016/j.ccr.2006.07.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wood JL, Singh N, Mer G, Chen J (2007) MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage. J Biol Chem 282(48):35416–35423. doi:10.1074/jbc.M705245200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Alderton GK, Galbiati L, Griffith E, Surinya KH, Neitzel H, Jackson AP, Jeggo PA, O’Driscoll M (2006) Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nat Cell Biol 8(7):725–733. doi:10.1038/ncb1431

    Article  CAS  PubMed  Google Scholar 

  13. Tibelius A, Marhold J, Zentgraf H, Heilig CE, Neitzel H, Ducommun B, Rauch A, Ho AD, Bartek J, Kramer A (2009) Microcephalin and pericentrin regulate mitotic entry via centrosome-associated Chk1. J Cell Biol 185(7):1149–1157. doi:10.1083/jcb.200810159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Leung JW, Leitch A, Wood JL, Shaw-Smith C, Metcalfe K, Bicknell LS, Jackson AP, Chen J (2011) SET nuclear oncogene associates with microcephalin/MCPH1 and regulates chromosome condensation. J Biol Chem 286(24):21393–21400. doi:10.1074/jbc.M110.208793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yamashita D, Shintomi K, Ono T, Gavvovidis I, Schindler D, Neitzel H, Trimborn M, Hirano T (2011) MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J Cell Biol 194(6):841–854. doi:10.1083/jcb.201106141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wood JL, Liang Y, Li K, Chen J (2008) Microcephalin/MCPH1 associates with the Condensin II complex to function in homologous recombination repair. J Biol Chem 283(43):29586–29592. doi:10.1074/jbc.M804080200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wu X, Mondal G, Wang X, Wu J, Yang L, Pankratz VS, Rowley M, Couch FJ (2009) Microcephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair. Cancer Res 69(13):5531–5536. doi:10.1158/0008-5472.CAN-08-4834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yang SZ, Lin FT, Lin WC (2008) MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep 9(9):907–915. doi:10.1038/embor.2008.128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lassus H, Laitinen MP, Anttonen M, Heikinheimo M, Aaltonen LA, Ritvos O, Butzow R (2001) Comparison of serous and mucinous ovarian carcinomas: distinct pattern of allelic loss at distal 8p and expression of transcription factor GATA-4. Laboratory Investig J Tech Met Pathol 81(4):517–526

    Article  CAS  Google Scholar 

  20. Pribill I, Speiser P, Leary J, Leodolter S, Hacker NF, Friedlander ML, Birnbaum D, Zeillinger R, Krainer M (2001) High frequency of allelic imbalance at regions of chromosome arm 8p in ovarian carcinoma. Cancer Genet Cytogenet 129(1):23–29

    Article  CAS  PubMed  Google Scholar 

  21. Chan KL, Lee JM, Guan XY, Fan ST, Ng IO (2002) High-density allelotyping of chromosome 8p in hepatocellular carcinoma and clinicopathologic correlation. Cancer 94(12):3179–3185. doi:10.1002/cncr.10612

    Article  CAS  PubMed  Google Scholar 

  22. DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI (2003) Pathological and molecular aspects of prostate cancer. Lancet 361(9361):955–964. doi:10.1016/S0140-6736(03)12779-1

    Article  CAS  PubMed  Google Scholar 

  23. Miller BJ, Wang D, Krahe R, Wright FA (2003) Pooled analysis of loss of heterozygosity in breast cancer: a genome scan provides comparative evidence for multiple tumor suppressors and identifies novel candidate regions. Am J Hum Genet 73(4):748–767. doi:10.1086/378522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Veltman JA, Fridlyand J, Pejavar S, Olshen AB, Korkola JE, DeVries S, Carroll P, Kuo WL, Pinkel D, Albertson D, Cordon-Cardo C, Jain AN, Waldman FM (2003) Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. Cancer Res 63(11):2872–2880

    CAS  PubMed  Google Scholar 

  25. Thor AD, Eng C, Devries S, Paterakos M, Watkin WG, Edgerton S, Moore DH 2nd, Etzell J, Waldman FM (2002) Invasive micropapillary carcinoma of the breast is associated with chromosome 8 abnormalities detected by comparative genomic hybridization. Hum Pathol 33(6):628–631

    Article  CAS  PubMed  Google Scholar 

  26. Bruning-Richardson A, Bond J, Alsiary R, Richardson J, Cairns DA, McCormack L, Hutson R, Burns P, Wilkinson N, Hall GD, Morrison EE, Bell SM (2011) ASPM and microcephalin expression in epithelial ovarian cancer correlates with tumour grade and survival. Br J Cancer 104(10):1602–1610. doi:10.1038/bjc.2011.117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Giallongo C, Tibullo D, La Cava P, Branca A, Parrinello N, Spina P, Stagno F, Conticello C, Chiarenza A, Vigneri P, Palumbo GA, Di Raimondo F (2011) BRIT1/MCPH1 expression in chronic myeloid leukemia and its regulation of the G2/M checkpoint. Acta Haematol 126(4):205–210. doi:10.1159/000329911

    Article  CAS  PubMed  Google Scholar 

  28. Richardson J, Shaaban AM, Kamal M, Alisary R, Walker C, Ellis IO, Speirs V, Green AR, Bell SM (2011) Microcephalin is a new novel prognostic indicator in breast cancer associated with BRCA1 inactivation. Breast Cancer Res Treat 127(3):639–648. doi:10.1007/s10549-010-1019-4

    Article  CAS  PubMed  Google Scholar 

  29. Liang Y, Gao H, Lin SY, Peng G, Huang X, Zhang P, Goss JA, Brunicardi FC, Multani AS, Chang S, Li K (2010) BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice. PLoS Genet 6(1):e1000826. doi:10.1371/journal.pgen.1000826

    Article  PubMed Central  PubMed  Google Scholar 

  30. Bilbao C, Ramirez R, Rodriguez G, Falcon O, Leon L, Diaz-Chico N, Perucho M, Diaz-Chico JC (2010) Double strand break repair components are frequent targets of microsatellite instability in endometrial cancer. Eur J Cancer 46(15):2821–2827. doi:10.1016/j.ejca.2010.06.116

    Article  CAS  PubMed  Google Scholar 

  31. Yuan C, Bu Y, Wang C, Yi F, Yang Z, Huang X, Cheng L, Liu G, Wang Y, Song F (2012) NFBD1/MDC1 is a protein of oncogenic potential in human cervical cancer. Mol Cell Biochem 359(1–2):333–346. doi:10.1007/s11010-011-1027-7

    Article  CAS  PubMed  Google Scholar 

  32. Ralhan R, Desouza LV, Matta A, Chandra Tripathi S, Ghanny S, Datta Gupta S, Bahadur S, Siu KW (2008) Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry. Mol Cell Prot 7(6):1162–1173. doi:10.1074/mcp.M700500-MCP200

    Article  CAS  Google Scholar 

  33. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386(6627):761–763. doi:10.1038/386761a0

  34. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3):323–331

    Article  CAS  PubMed  Google Scholar 

  35. Hofseth LJ, Hussain SP, Harris CC (2004) p53: 25 years after its discovery. Trends Pharmacol Sci 25(4):177–181. doi:10.1016/j.tips.2004.02.009

    Article  CAS  PubMed  Google Scholar 

  36. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13(6):994–1002. doi:10.1038/sj.cdd.4401908

    Article  CAS  PubMed  Google Scholar 

  37. Park JJ, Yi JY, Jin YB, Lee YJ, Lee JS, Lee YS, Ko YG, Lee M (2012) Sialylation of epidermal growth factor receptor regulates receptor activity and chemosensitivity to gefitinib in colon cancer cells. Biochem Pharmacol 83(7):849–857. doi:10.1016/j.bcp.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  38. Peng G, Yim EK, Dai H, Jackson AP, Burgt I, Pan MR, Hu R, Li K, Lin SY (2009) BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol 11(7):865–872. doi:10.1038/ncb1895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870. doi:10.1038/nature03482

    Article  CAS  PubMed  Google Scholar 

  40. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913. doi:10.1038/nature03485

    Article  CAS  PubMed  Google Scholar 

  41. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415 (6871):530–536. doi:10.1038/415530a

  42. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679. doi:10.1016/S0140-6736(05)17947-1

    Article  CAS  PubMed  Google Scholar 

  43. Gerard C, Goldbeter A (2012) From quiescence to proliferation: Cdk oscillations drive the mammalian cell cycle. Front Physiol 3:413. doi:10.3389/fphys.2012.00413

    Article  PubMed Central  PubMed  Google Scholar 

  44. Perdiguero E, Nebreda AR (2004) Regulation of Cdc25C activity during the meiotic G2/M transition. Cell Cycle 3(6):733–737

    Article  CAS  PubMed  Google Scholar 

  45. Shu KX, Li B, Wu LX (2007) The p53 network: p53 and its downstream genes. Colloids Surf B 55(1):10–18. doi:10.1016/j.colsurfb.2006.11.003

    Article  CAS  Google Scholar 

  46. Kawabe T (2004) G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3(4):513–519

    CAS  PubMed  Google Scholar 

  47. Zhang B, Wang E, Dai H, Hu R, Liang Y, Li K, Wang G, Peng G, Lin SY (2013) BRIT1 regulates p53 stability and functions as a tumor suppressor in breast cancer. Carcinogenesis. doi:10.1093/carcin/bgt190

  48. Zhang F, Kong DS, Zhang ZL, Lei N, Zhu XJ, Zhang XP, Chen L, Lu Y, Zheng SZ (2013) Tetramethylpyrazine induces G0/G1 cell cycle arrest and stimulates mitochondrial-mediated and caspase-dependent apoptosis through modulating ERK/p53 signaling in hepatic stellate cells in vitro. Apoptosis Int J Progr Cell Death 18(2):135–149. doi:10.1007/s10495-012-0791-5

    Article  CAS  Google Scholar 

  49. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis*. Annu Rev Genet 43:95–118. doi:10.1146/annurev-genet-102108-134850

    Article  CAS  PubMed  Google Scholar 

  50. Yuan XW, Wang DM, Hu Y, Tang YN, Shi WW, Guo XJ, Song JG (2013) Hepatocyte nuclear factor 6 suppresses the migration and invasive growth of lung cancer cells through p53 and the inhibition of epithelial–mesenchymal transition. J Biol Chem 288(43):31206–31216. doi:10.1074/jbc.M113.480285

    Article  CAS  PubMed  Google Scholar 

  51. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen CT, Yu D, Hung MC (2011) p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13(3):317–323. doi:10.1038/ncb2173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, Sudo S, Ju J, Sakuragi N (2013) Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32(27):3286–3295. doi:10.1038/onc.2012.334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jian Yang and Dr. Zheng Zhang for critical reading of the manuscript. This work was supported by grants from the National Natural Science Foundation of China (No. 30800410).

Conflict of interest

All the authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangzhou Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mai, L., Yi, F., Gou, X. et al. The overexpression of MCPH1 inhibits cell growth through regulating cell cycle-related proteins and activating cytochrome c-caspase 3 signaling in cervical cancer. Mol Cell Biochem 392, 95–107 (2014). https://doi.org/10.1007/s11010-014-2022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2022-6

Keywords

Navigation