Skip to main content
Log in

Deficiency of MTMR14 promotes autophagy and proliferation of mouse embryonic fibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MTMR14 is a phosphoinositide phosphatase, which has been reported to regulate the maintenance of normal muscle performance and aging in mice. However, the function of MTMR14 in mouse embryonic fibroblasts (MEFs) remains largely unknown. In this study, we established MTMR14 WT and KO MEFs and showed that MTMR14 is localized in whole MEFs, with higher level in nucleus and lower in cytoplasm, partially overlapping with mitochondrial. Compared with the WT control, MTMR14 KO MEFs exhibit a higher proliferation rate and more obvious autophagy. Furthermore, we demonstrate that KO of MTMR14 significantly decreased the mRNA levels of p21 and p27, while increased those of cyclinD and cyclinE. Upon (insulin-like growth factor) IGF stimulation, we also found KO of MTMR14 enhanced the phosphorylation levels of AKT and ERK in MEFs. Based on these findings, we propose that defect of MTMR14 promotes autophagy and cell proliferation in MEFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amoasii L, Hnia K, Laporte J (2012) Myotubularin phosphoinositide phosphatases in human diseases. Curr Top Microbiol Immunol 362:209–233

    CAS  PubMed  Google Scholar 

  2. Tosch V, Rohde HM, Tronchere H, Zanoteli E, Monroy N, Kretz C, Dondaine N, Payrastre B, Mandel JL, Laporte J (2006) A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy. Hum Mol Genet 15:3098–3106

    Article  CAS  PubMed  Google Scholar 

  3. Shen J, Yu WM, Brotto M, Scherman JA, Guo C, Stoddard C, Nosek TM, Valdivia HH, Qu CK (2009) Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca(2+) homeostasis. Nat Cell Biol 11:769–776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Powers SK, Reid MB (2010) MIP/MTMR14 and muscle aging. Aging (Albany NY) 2:538

    Google Scholar 

  5. Romero-Suarez S, Shen J, Brotto L, Hall T, Mo C, Valdivia HH, Andresen J, Wacker M, Nosek TM, Qu CK, Brotto M (2010) Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging (Albany NY) 2:504–513

    CAS  Google Scholar 

  6. Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, Proikas-Cezanne T, Laporte J, Deretic V (2009) Control of autophagy initiation by phosphoinositide 3-phosphatase Jumpy. EMBO J 28:2244–2258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gibbs EM, Feldman EL, Dowling JJ (2010) The role of MTMR14 in autophagy and in muscle disease. Autophagy 6:819–820

    Article  PubMed  Google Scholar 

  8. Hnia K, Kretz C, Amoasii L, Bohm J, Liu X, Messaddeq N, Qu CK, Laporte J (2012) Primary T-tubule and autophagy defects in the phosphoinositide phosphatase Jumpy/MTMR14 knockout mice muscle. Adv Biol Regul 52:98–107

    Article  CAS  PubMed  Google Scholar 

  9. Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25:1999–2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kang R, Tang D, Lotze MT, Zeh Iii HJ (2013) Autophagy is required for IL-2-mediated fibroblast growth. Exp Cell Res 319:556–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459

    Article  CAS  PubMed  Google Scholar 

  12. Maiese K, Chong ZZ, Shang YC, Wang S (2012) Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 16:1203–1214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lozy F, Karantza V (2012) Autophagy and cancer cell metabolism. Semin Cell Dev Biol 23:395–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mathew R, White E (2011) Autophagy, stress, and cancer metabolism: what doesn’t kill you makes you stronger. Cold Spring Harb Symp Quant Biol 76:389–396

    Article  CAS  PubMed  Google Scholar 

  15. Lei Y (2013) Generation and culture of mouse embryonic fibroblasts. Methods Mol Biol 1031:59–64

    Article  PubMed  Google Scholar 

  16. Moore CB, Allen IC (2013) Primary ear fibroblast derivation from mice. Methods Mol Biol 1031:65–70

    Article  PubMed  Google Scholar 

  17. Liu X, Zheng H, Qu CK (2012) Protein tyrosine phosphatase Shp2 (Ptpn11) plays an important role in maintenance of chromosome stability. Cancer Res 72:5296–5306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang Z, Xu J, Zhou JY, Liu Y, Wu GS (2006) Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Res 66:8870–8877

    Article  CAS  PubMed  Google Scholar 

  19. Vergne I, Deretic V (2010) The role of PI3P phosphatases in the regulation of autophagy. FEBS Lett 584:1313–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Dall’Armi C, Devereaux KA, Di Paolo G (2013) The role of lipids in the control of autophagy. Curr Biol 23:R33–R45

    Article  PubMed Central  PubMed  Google Scholar 

  21. Rodriguez-Enriquez S, Kai Y, Maldonado E, Currin RT, Lemasters JJ (2009) Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy 5:1099–1106

    Article  CAS  PubMed  Google Scholar 

  22. Duronio RJ, Xiong Y (2013) Signaling pathways that control cell proliferation. Cold Spring Harb Perspect Biol 5:a008904

    Article  PubMed  Google Scholar 

  23. Shaw A, Olivares-Chauvet P, Maya-Mendoza A, Jackson DA (2010) S-phase progression in mammalian cells: modelling the influence of nuclear organization. Chromosom Res 18:163–178

    Article  CAS  Google Scholar 

  24. Jin J, Yuan F, Shen MQ, Feng YF, He QL (2013) Vascular endothelial growth factor regulates primate choroid-retinal endothelial cell proliferation and tube formation through PI3K/Akt and MEK/ERK dependent signaling. Mol Cell Biochem 381:267–272

    Article  CAS  PubMed  Google Scholar 

  25. Xu J (2005) Preparation, culture, and immortalization of mouse embryonic fibroblasts. Curr Protoc Mol Biol Chapter 28:Unit 28 1

  26. Stacey DW (2003) Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr Opin Cell Biol 15:158–163

    Article  CAS  PubMed  Google Scholar 

  27. Zhang P, Xu X, Hu X, Wang H, Fassett J, Huo Y, Chen Y, Bache RJ (2013) DDAH1 deficiency attenuates endothelial cell cycle progression and angiogenesis. PLoS ONE 8:e79444

    Article  PubMed Central  PubMed  Google Scholar 

  28. Wang L, Wang G, Yang D, Guo X, Xu Y, Feng B, Kang J (2013) Euphol arrests breast cancer cells at the G1 phase through the modulation of cyclin D1, p21 and p27 expression. Mol Med Rep 8:1279–1285

    CAS  PubMed  Google Scholar 

  29. Kaulfuss S, Burfeind P, Gaedcke J, Scharf JG (2009) Dual silencing of insulin-like growth factor-I receptor and epidermal growth factor receptor in colorectal cancer cells is associated with decreased proliferation and enhanced apoptosis. Mol Cancer Ther 8:821–833

    Article  CAS  PubMed  Google Scholar 

  30. Haase I, Evans R, Pofahl R, Watt FM (2003) Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1- and EGF-dependent signalling pathways. J Cell Sci 116:3227–3238

    Article  CAS  PubMed  Google Scholar 

  31. Fleming JM, Desury G, Polanco TA, Cohick WS (2006) Insulin growth factor-I and epidermal growth factor receptors recruit distinct upstream signaling molecules to enhance AKT activation in mammary epithelial cells. Endocrinology 147:6027–6035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China, and the Fund for Distinguished Young Scholars of Heibei Province to Jinhua Shen (Grant No. 2012FFA028).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhua Shen.

Additional information

Jing Liu, Yin Lv, These authors contributes equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Lv, Y., Liu, Qh. et al. Deficiency of MTMR14 promotes autophagy and proliferation of mouse embryonic fibroblasts. Mol Cell Biochem 392, 31–37 (2014). https://doi.org/10.1007/s11010-014-2015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2015-5

Keywords

Navigation