Skip to main content

Advertisement

Log in

l-Cysteine supplementation reduces high-glucose and ketone-induced adhesion of monocytes to endothelial cells by inhibiting ROS

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Type 1 diabetic (T1D) patients are hyperglycemic and also show elevated blood levels of ketone bodies, particularly acetoacetate (AA) and β-hydroxybutyrate (BHB). T1D patients have a greater risk of developing endothelial dysfunction and cardiovascular disease (CVD). Supplementation with cysteine-rich milk proteins has been shown to be beneficial in improving various biomarkers of endothelial dysfunction and CVD. This study examines whether l-cysteine (LC) per se prevents monocyte adhesion to endothelial cells, a critical step in endothelial dysfunction. Human umbilical vein endothelial cells and THP-1 monocytes were pretreated with and without LC (500 μM) for 2 h and then exposed to ketones (AA or BHB, 0–4 mM) and/or high glucose (HG) (25 mM) for 24 h. This study shows that LC reduces HG and ketone-induced ROS production, ICAM-1 expression, and the adhesion of monocytes to endothelial cells. This study provides a biochemical mechanism by which milk protein supplementation can be beneficial in preventing the excess endothelial dysfunction and CVD seen in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Devaraj S, Cheung AT, Jialal I, Griffen SC, Nguyen D, Glaser N, Aoki T (2007) Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications. Diabetes 56:2790–2796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038

    Article  CAS  PubMed  Google Scholar 

  3. Ghiadoni L, Huang Y, Magagna A, Buralli S, Taddei S, Salvetti A (2001) Effect of acute blood pressure reduction on endothelial function in the brachial artery of patients with essential hypertension. J Hypertens 19:547–551

    Article  CAS  PubMed  Google Scholar 

  4. Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL, Eisenberg MJ (2010) The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol 56:1113–1132

    Google Scholar 

  5. Foster JR, Morrison G, Fraser DD (2011) Diabetic ketoacidosis-associated stroke in children and youth. Stroke Res Treat 2011:219706

    PubMed Central  PubMed  Google Scholar 

  6. Candiloros H, Muller S, Zeghari N, Donner M, Drouin P, Ziegler O (1995) Decreased erythrocyte membrane fluidity in poorly controlled IDDM: influence of ketone bodies. Diabetes Care 18:549–551

    Article  CAS  PubMed  Google Scholar 

  7. Ebaid H, Salem A, Sayed A, Metwalli A (2011) Whey protein enhances normal inflammatory responses during cutaneous wound healing in diabetic rats. Lipids Health Dis 10:235

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hamad EM, Taha SH, Abou Dawood AG, Sitohy MZ, Abdel-Hamid M (2011) Protective effect of whey proteins against nonalcoholic fatty liver in rats. Lipids Health Dis 10:57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Xu R, Liu N, Xu X, Kong B (2011) Antioxidative effects of whey protein on peroxide-induced cytotoxicity. J Dairy Sci 94:3739–3746

    Article  CAS  PubMed  Google Scholar 

  10. Zavorsky GS, Kubow S, Grey V, Riverin V, Lands LC (2007) An open-label dose–response study of lymphocyte glutathione levels in healthy men and women receiving pressurized whey protein isolate supplements. Int J Food Sci Nutr 58:429–436

    Article  CAS  PubMed  Google Scholar 

  11. Micke P, Beeh KM, Buhl R (2002) Effects of long-term supplementation with whey proteins on plasma glutathione levels of HIV-infected patients. Eur J Nutr 41:12–18

    Article  CAS  PubMed  Google Scholar 

  12. de Aguilar-Nascimento JE, Prado Silveira BR, Dock-Nascimento DB (2010) Early enteral nutrition with whey protein or casein in elderly patients with acute ischemic stroke: a double-blind randomized trial. Nutrition 27:440–444

    Article  PubMed  Google Scholar 

  13. Pal S, Ellis V (2009) The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity (Silver Spring) 18:1354–1359

    Article  Google Scholar 

  14. Ballard KD, Bruno RS, Seip RL, Quann EE, Volk BM, Freidenreich DJ, Kawiecki DM, Kupchak BR, Chung MY, Kraemer WJ, Volek JS (2009) Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: a randomized, placebo controlled trial. Nutr J 8:34

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ballard KD, Kupchak BR, Volk BM, Mah E, Shkreta A, Liptak C, Ptolemy AS, Kellogg MS, Bruno RS, Seip RL, Maresh CM, Kraemer WJ, Volek JS (2012) Acute effects of ingestion of a novel whey-derived extract on vascular endothelial function in overweight, middle-aged men and women. Br J Nutr 109:882–893

    Article  PubMed  Google Scholar 

  16. Ballard KD, Mah E, Guo Y, Pei R, Volek JS, Bruno RS (2013) Low-fat milk ingestion prevents postprandial hyperglycemia-mediated impairments in vascular endothelial function in obese individuals with metabolic syndrome. J Nutr 143: 1602–1610

    Google Scholar 

  17. Chitapanarux T, Tienboon P, Pojchamarnwiputh S, Leelarungrayub D (2009) Open-labeled pilot study of cysteine-rich whey protein isolate supplementation for nonalcoholic steatohepatitis patients. J Gastroenterol Hepatol 24:1045–1050

    Article  CAS  PubMed  Google Scholar 

  18. Jain SK, McVie R (1999) Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients. Diabetes 48:1850–1855

    Article  CAS  PubMed  Google Scholar 

  19. Jain SK (1989) Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 264:21340–21345

    CAS  PubMed  Google Scholar 

  20. Rains JL, Jain SK (2010) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    Article  PubMed Central  PubMed  Google Scholar 

  21. Tesfamariam B, Cohen RA (1992) Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol Heart Circ Physiol 263:H321–H326

    CAS  Google Scholar 

  22. Fatehi-Hassanabad Z, Chan CB, Furman BL (2010) Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol 636:8–17

    Article  CAS  PubMed  Google Scholar 

  23. Potenza MA, Gagliardi S, Nacci C, Carratu MR, Montagnani M (2009) Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem 16:94–112

    Article  CAS  PubMed  Google Scholar 

  24. Lum H, Roebuck KA (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280:C719–C741

    CAS  PubMed  Google Scholar 

  25. Wollesen F, Brattstrom L, Refsum H, Ueland PM, Berglund L, Berne C (1999) Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. Kidney Int 55:1028–1035

    Article  CAS  PubMed  Google Scholar 

  26. Anders MW, Dekant W (1994) Aminoacylases. Adv Pharmacol 27:431–448

    Article  CAS  PubMed  Google Scholar 

  27. Andrews NP, Prasad A, Quyyumi AA (2001) N-Acetylcysteine improves coronary and peripheral vascular function. J Am Coll Cardiol 37:117–123

    Article  CAS  PubMed  Google Scholar 

  28. Diniz YS, Rocha KK, Souza GA, Galhardi CM, Ebaid GM, Rodrigues HG, Novelli Filho JL, Cicogna AC, Novelli EL (2006) Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats. Eur J Pharmacol 543:151–157

    Article  CAS  PubMed  Google Scholar 

  29. Jeremias A, Soodini G, Gelfand E, Xu Y, Stanton RC, Horton ES, Cohen DJ (2009) Effects of N-acetyl-l-cysteine on endothelial function and inflammation in patients with type 2 diabetes mellitus. Heart Int 4:25–29

    Article  CAS  Google Scholar 

  30. Yamauchi A, Ueda N, Hanafusa S, Yamashita E, Kihara M, Naito S (2002) Tissue distribution of and species differences in deacetylation of N-acetyl-l-cysteine and immunohistochemical localization of acylase I in the primate kidney. J Pharm Pharmacol 54:205–212

    Article  CAS  PubMed  Google Scholar 

  31. Manna P, Jain SK (2011) Hydrogen sulfide and l-cysteine increase phosphatidylinositol 3,4,5-trisphosphate (PIP3) and glucose utilization by inhibiting phosphatase and tensin homolog (PTEN) protein and activating phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/protein kinase Czeta/lambda (PKCzeta/lambda) in 3T3l1 adipocytes. J Biol Chem 286:39848–39859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Manna P, Jain SK (2013) l-Cysteine and hydrogen sulfide increase PIP3 and AMPK/PPARgamma expression and decrease ROS and vascular inflammation markers in high glucose treated human U937 monocytes. J Cell Biochem 114:2334–2345

    Article  CAS  PubMed  Google Scholar 

  33. Jain SK, Velusamy T, Croad JL, Rains JL, Bull R (2009) l-Cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, and oxidative stress and inhibits NF-kappaB activation in the livers of Zucker diabetic rats. Free Radic Biol Med 46:1633–1638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Iyer SS, Accardi CJ, Ziegler TR, Blanco RA, Ritzenthaler JD, Rojas M, Roman J, Jones DP (2009) Cysteine redox potential determines pro-inflammatory IL-1beta levels. PLoS ONE 4:e5017

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sekhar RV, Patel SG, Guthikonda AP, Reid M, Balasubramanyam A, Taffet GE, Jahoor F (2011) Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am J Clin Nutr 94:847–853

    Google Scholar 

  36. Fukao T, Lopaschuk GD, Mitchell GA (2004) Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 70:243–251

    Article  CAS  PubMed  Google Scholar 

  37. Candiloros H, Muller S, Zeghari N, Donner M, Drouin P, Ziegler O (1995) Decreased erythrocyte membrane fluidity in poorly controlled IDDM. Influence of ketone bodies. Diabetes Care 18:549–551

    Article  CAS  PubMed  Google Scholar 

  38. Kim JA, Berliner JA, Natarajan RD, Nadler JL (1994) Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes 43:1103–1107

    Article  CAS  PubMed  Google Scholar 

  39. van den Brandhof WE, Haks K, Schouten EG, Verhoef P (2001) The relation between plasma cysteine, plasma homocysteine and coronary atherosclerosis. Atherosclerosis 157:403–409

    Article  PubMed  Google Scholar 

  40. Burlet E, Jain SK (2013) Manganese supplementation reduces high glucose-induced monocyte adhesion to endothelial cells and endothelial dysfunction in Zucker diabetic fatty rats. J Biol Chem 288:6409–6416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Rains JL, Jain SK (2011) Hyperketonemia increases monocyte adhesion to endothelial cells and is mediated by LFA-1 expression in monocytes and ICAM-1 expression in endothelial cells. Am J Physiol Endocrinol Metab 301:E298–E306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Jain SK, Kannan K, Lim G (1998) Ketosis (acetoacetate) can generate oxygen radicals and cause increased lipid peroxidation and growth inhibition in human endothelial cells. Free Radic Biol Med 25:1083–1088

    Article  CAS  PubMed  Google Scholar 

  43. Garber AJ, Menzel PH, Boden G, Owen OE (1974) Hepatic ketogenesis and gluconeogenesis in humans. J Clin Investig 54:981–989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Owen OE, Felig P, Morgan AP, Wahren J, Cahill GF Jr (1969) Liver and kidney metabolism during prolonged starvation. J Clin Investig 48:574–583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Carl GF, Hoffman WH, Passmore GG, Truemper EJ, Lightsey AL, Cornwell PE, Jonah MH (2003) Diabetic ketoacidosis promotes a prothrombotic state. Endocr Res 29:73–82

    Article  CAS  PubMed  Google Scholar 

  46. Jain SK, McVie R, Jackson R, Levine SN, Lim G (1999) Effect of hyperketonemia on plasma lipid peroxidation levels in diabetic patients. Diabetes Care 22:1171–1175

    Article  CAS  PubMed  Google Scholar 

  47. Ganini D, Christoff M, Ehrenshaft M, Kadiiska MB, Mason RP, Bechara EJ (2011) Myoglobin-H2O2 catalyzes the oxidation of beta-ketoacids to alpha-dicarbonyls: mechanism and implications in ketosis. Free Radic Biol Med 51:733–743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Abdelmegeed MA, Kim SK, Woodcroft KJ, Novak RF (2004) Acetoacetate activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in primary cultured rat hepatocytes: role of oxidative stress. J Pharmacol Exp Ther 310:728–736

    Article  CAS  PubMed  Google Scholar 

  49. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RV Jr, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2012) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214

    Article  PubMed Central  PubMed  Google Scholar 

  50. Hoffman WH, Cheng C, Passmore GG, Carroll JE, Hess D (2002) Acetoacetate increases expression of intercellular adhesion molecule-1 (ICAM-1) in human brain microvascular endothelial cells. Neurosci Lett 334:71–74

    Article  CAS  PubMed  Google Scholar 

  51. Fogelstrand L, Hulthe J, Hulten LM, Wiklund O, Fagerberg B (2004) Monocytic expression of CD14 and CD18, circulating adhesion molecules and inflammatory markers in women with diabetes mellitus and impaired glucose tolerance. Diabetologia 47:1948–1952

    Article  CAS  PubMed  Google Scholar 

  52. Mysliwiec J, Kretowski A, Kinalski M, Kinalska I (1999) CD11a expression and soluble ICAM-1 levels in peripheral blood in high-risk and overt type 1 diabetes subjects. Immunol Lett 70:69–72

    Article  CAS  PubMed  Google Scholar 

  53. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  CAS  PubMed  Google Scholar 

  54. Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27:2292–2301

    Article  CAS  PubMed  Google Scholar 

  55. Aune D, Norat T, Romundstad P, Vatten LJ (2013) Dairy products and the risk of type 2 diabetes: a systematic review and dose–response meta-analysis of cohort studies. Am J Clin Nutr 98:1066–1083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Georgia Morgan for excellent editing. The authors are supported by NIDDK and the ODS (RO1 DK072433), the Malcolm Feist Chair in Diabetes, and the Malcolm Feist Predoctoral Fellowship by the Institute for Cardiovascular Diseases and Imaging.

Conflicts of interest

No conflicts of interest are declared by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanikarla-Marie, P., Jain, S.K. l-Cysteine supplementation reduces high-glucose and ketone-induced adhesion of monocytes to endothelial cells by inhibiting ROS. Mol Cell Biochem 391, 251–256 (2014). https://doi.org/10.1007/s11010-014-2009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2009-3

Keywords

Navigation