Skip to main content

Advertisement

Log in

HepaCAM inhibits clear cell renal carcinoma 786-0 cell proliferation via blocking PKCε translocation from cytoplasm to plasma membrane

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocyte cell adhesion molecule (HepaCAM) plays a crucial role in tumor progression and has been recognized as a novel tumor suppressor gene. The high protein expression level of protein kinase Cε (PKCε) has been discovered in many tumor types. In the present study, we determined HepaCAM and PKCε protein levels in human clear cell renal cell carcinoma (ccRCC) tissues and analyzed the correlation between them. We observed an inverse relationship in the expression of HepaCAM and PKCε in ccRCC and adjacent normal tissues. In ccRCC tissue, HepaCAM expression was undetectable while PKCε expression was high; the opposite was found in the adjacent normal tissue. Western blot analysis demonstrated that PKCε cytosolic protein levels increased while plasma membrane protein levels decreased without any change in total protein following infection of the ccRCC cell line 786-0 with adenovirus-GFP-HepaCAM (Ad-GFP-HepaCAM). Moreover, the application of Ad-GFP-HepaCAM combined with a PKCε-specific translocation inhibitor (εV1-2) effectively inhibited 786-0 cell growth. Ad-mediated expression of HepaCAM in 786-0 cells reduced the levels of phosphorylated AKT and cyclin D1 and inhibited cell proliferation. In summary, our studies point to interesting connections between HepaCAM and PKCε in tissues and in vitro. HepaCAM may prevent the translocation of PKCε from cytosolic to particulate fractions, resulting in the inhibition of 786-0 cell proliferation. Therapeutic manipulation of these novel protein targets may provide new ways of treating ccRCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ljungberg B, Cowan NC, Hanbury DC et al (2010) EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 58:398–406

    Article  PubMed  Google Scholar 

  2. Staehler M, Haseke N, Schoeppler G et al (2007) Modern therapeutic approaches in metastatic renal cell carcinoma. EAU-EBU Update Ser 5:26–37

    Article  Google Scholar 

  3. Chung Moh M, Hoon Lee L, Shen S (2005) Cloning and characterization of hepaCAM, a novel Ig-like cell adhesion molecule suppressed in human hepatocellular carcinoma. J Hepatol 42:833–841

    Article  PubMed  Google Scholar 

  4. Yang S, Wu X, Luo C et al (2010) Expression and clinical significance of hepaCAM and VEGF in urothelial carcinoma. World J Urol 28:473–478

    Article  CAS  PubMed  Google Scholar 

  5. Xun C, Luo C, Wu X et al (2010) Expression of hepaCAM and its effect on proliferation of tumor cells in renal cell carcinoma. Urology 75:828–834

    Article  PubMed  Google Scholar 

  6. Moh MC, Zhang T, Lee LH et al (2008) Expression of hepaCAM is downregulated in cancers and induces senescence-like growth arrest via a p53/p21-dependent pathway in human breast cancer cells. Carcinogenesis 29:2298–2305

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Luo C, Wu X et al (2013) HepaCAM and p-mTOR closely correlate in bladder transitional cell carcinoma and hepaCAM expression inhibits proliferation via an AMPK/mTOR dependent pathway in human bladder cancer cells. J Urol 190:1912–1918

    Article  CAS  PubMed  Google Scholar 

  8. Xu B, He Y, Wu X et al (2012) Exploration of the correlations between interferon-γ in patient serum and HepaCAM in bladder transitional cell carcinoma, and the interferon-γ mechanism inhibiting BIU-87 proliferation. J Urol 188:1346–1353

    Article  CAS  PubMed  Google Scholar 

  9. Lee LH, Moh MC, Zhang T et al (2009) The immunoglobulin-like cell adhesion molecule HepaCAM induces differentiation of human glioblastoma U373-MG cells. J Cell Biochem 107:1129–1138

    Article  CAS  PubMed  Google Scholar 

  10. He Y, Wu X, Luo C et al (2010) Functional significance of the HepaCAM gene in bladder cancer. BMC Cancer 10:83

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zhang QL, Luo CL, Wu XH et al (2011) HepaCAM induces G1 phase arrest and promotes c-Myc degradation in human renal cell carcinoma. J Cell Biochem 112:2910–2919

    Article  CAS  PubMed  Google Scholar 

  12. Hafeez BB, Zhong W, Weichert J et al (2011) Genetic ablation of PKC epsilon inhibits prostate cancer development and metastasis in transgenic mouse model of prostate adenocarcinoma. Cancer Res 71:2318–2327

    Article  PubMed Central  PubMed  Google Scholar 

  13. Totoń E, Ignatowicz E, Skrzeczkowska K et al (2011) Protein kinase C ε as a cancer marker and target for anticancer therapy. Pharmacol Rep 63:19–29

    Article  PubMed  Google Scholar 

  14. Bae KM, Wang H, Jiang G et al (2007) Protein kinase C is overexpressed in primary human non-small cell lung cancers and functionally required for proliferation of non-small cell lung cancer cells in a p21/Cip1-dependent manner. Cancer Res 67:6053–6063

    Article  CAS  PubMed  Google Scholar 

  15. Akita Y (2002) Protein kinase C ε (PKC ε) its unique structure and function. J Bio chem 132:847–852

    CAS  Google Scholar 

  16. Kashiwagi K (2002) Importance of C1B domain for lipid messenger-induced targeting of protein kinase C. J Biol Chem 277:18037–18045

    Article  CAS  PubMed  Google Scholar 

  17. Csukai M, Chen CH, De Matteis MA et al (1997) The coatomer protein beta ‘-COP, a selective binding protein (RACK) for protein kinase C epsilon. J Biol Chem 272:29200–29206

    Article  CAS  PubMed  Google Scholar 

  18. Liron T, Chen LE, Khaner H et al (2007) Rational design of a selective antagonist of epsilon protein kinase C derived from the selective allosteric agonist, pseudo-RACK peptide. J Mol Cell Cardiol 42:835–841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Diouf B, Collazos A, Labesse G et al (2009) A 20-amino acid module of protein kinase C involved in translocation and selective targeting at cell-cell contacts. J Biol Chem 284:18808–18815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Edge SB, Byrd, Carducci M et al (2009) AJCC cancer staging handbook: from the AJCC cancer staging manual, vol 7. Springer, New York, pp 547–560

    Google Scholar 

  21. Störkel S, Eble JN, Adlakha K et al (1997) Classification of renal cell carcinoma. Cancer 80:987–989

    Article  PubMed  Google Scholar 

  22. Ruckhäberle E, Karn T, Denkert C et al (2013) Predictive value of sphingosine kinase 1 expression in neoadjuvant treatment of breast cancer. J Cancer Res Clin Oncol 139:1681–1689

    Article  PubMed  Google Scholar 

  23. England K, Rumsby MG (2000) Changes in protein kinase C epsilon phosphorylation status and intracellular localization as 3T3 and 3T6 fibroblasts grow to confluency and quiescence_ a role for phosphorylation at ser-729? Biochem J 352:19–26

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Moh MC, Zhang C, Luo C et al (2005) Structural and functional analyses of a novel Ig-like cell adhesion molecule, HepaCAM, in the human breast carcinoma MCF7 cells. J Biol Chem 280:27366–27374

    Article  CAS  PubMed  Google Scholar 

  25. Brenner W, Benzing F, Gudejko-Thiel J et al (2004) Regulation of beta1 integrin expression by PKC epsilon in renal cancer cells. Int J Oncol 25:1157–1163

    CAS  PubMed  Google Scholar 

  26. Bright R, Sun GH, Yenari MA et al (2008) ε PKC confers acute tolerance to cerebral ischemic reperfusion injury. Neurosci Lett 441:120–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Nelson TJ, Cui C, Luo Y et al (2009) Reduction of beta-amyloid levels by novel protein kinase c (epsilon) activators. J Biol Chem 284:34514–34521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Slupsky JR, Kamiguti AS, Harris RJ et al (2007) Central role of protein kinase Cε in constitutive activation of ERK1/2 and Rac1 in the malignant cells of hairy cell leukemia. Am J Pathol 170:745–754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Basu A, Sivaprasad U (2007) Protein kinase Cε makes the life and death decision. Cell Signal 19:1633–1642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Garg R, Blando J, Perez CJ et al (2012) Activation of nuclear factor B (NF-B) in prostate cancer is mediated by protein kinase C epsilon (PKC epsilon). J Biol Chem 287:37570–37582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Aziz MH, Manoharan HT, Church DR et al (2007) Protein kinase C interacts with signal transducers and activators of transcription 3 (Stat3), phosphorylates Stat3Ser727, and regulates its constitutive activation in prostate cancer. Cancer Res 67:8828–8838

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was done in the Department of Laboratory Diagnosis, Chongqing Medical University.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohou Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, B., Tan, J., Du, H. et al. HepaCAM inhibits clear cell renal carcinoma 786-0 cell proliferation via blocking PKCε translocation from cytoplasm to plasma membrane. Mol Cell Biochem 391, 95–102 (2014). https://doi.org/10.1007/s11010-014-1991-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-1991-9

Keywords

Navigation