Skip to main content
Log in

Identification of a new Mpl-interacting protein, Atp5d

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Thrombopoietin (TPO) can regulate hematopoiesis and megakaryopoiesis via activation of its receptor, c-Mpl, and multiple downstream signal transduction pathways. Using the cytoplasmic domain of Mpl as bait, we performed yeast two-hybrid screening, and found that the protein Atp5d might associate with Mpl. Atp5d is known as the δ subunit of mitochondrial ATP synthase, but little is known about the function of dissociative Atp5d. The interaction between Mpl and Atp5d was confirmed by the yeast two-hybrid system, mammalian two-hybrid assay, pull-down experiment, and co-immunoprecipitation study in vivo and in vitro. An additional immunofluorescence assay showed that the two proteins can colocalize along the plasma membrane in the cytoplasm. Using the yeast two-hybrid system, we tested a series of cytoplasmic truncated mutations for their ability to bind Atp5d and found an association between Atp5d and the Aa98-113 domain of Mpl. The dissociation of Atp5d from Mpl after TPO stimulation suggests that Atp5d may be a new component of TPO signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaushansky K (1997) Thrombopoietin the primary regulator of platelet production. Trends Endocrinol Metab 8:45–50

    Article  CAS  PubMed  Google Scholar 

  2. Kuter DJ, Gernsheimer TB (2009) Thrombopoietin and platelet production in chronic immune thrombocytopenia. Hematol Oncol Clin North Am 23:1193–1211

    Article  PubMed Central  PubMed  Google Scholar 

  3. Chou FS, Mulloy JC (2012) The thrombopoietin/MPL pathway in hematopoiesis and leukemogenesis. J Cell Biochem 112:1491–1498

    Article  Google Scholar 

  4. de Graaf CA, Metcalf D (2011) Thrombopoietin and hematopoietic stem cells. Cell Cycle 10:1582–1589

    Article  PubMed Central  PubMed  Google Scholar 

  5. Geddis AE, Linden HM, Kaushansky K (2002) Thrombopoietin: a pan-hematopoietic cytokine. Cytokine Growth Factor Rev 13:61–73

    Article  CAS  PubMed  Google Scholar 

  6. Dorsch M, Danial NN, Rothman PB, Goff SP (1999) A thrombopoietin receptor mutant deficient in Jak-STAT activation mediates proliferation but not differentiation in UT-7 cells. Blood 94:2676–2685

    CAS  PubMed  Google Scholar 

  7. Drachman JG, Kaushansky K (1997) Dissecting the thrombopoietin receptor: functional elements of the Mpl cytoplasmic domain. Proc Natl Acad Sci USA 94:2350–2355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tortolani PJ, Johnston JA, Bacon CM, McVicar DW, Shimosaka A et al (1995) Thrombopoietin induces tyrosine phosphorylation and activation of the Janus kinase, JAK2. Blood 85:3444–3451

    CAS  PubMed  Google Scholar 

  9. Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B et al (1993) JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74:227–236

    Article  CAS  PubMed  Google Scholar 

  10. Jung AS, Kaushansky A, Macbeath G, Kaushansky K (2011) Tensin2 is a novel mediator in thrombopoietin (TPO)-induced cellular proliferation by promoting Akt signaling. Cell Cycle 10:1838–1844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Nakanishi-Matsui M, Sekiya M, Futai M (2013) Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics. IUBMB Life 65:247–254

    Article  CAS  PubMed  Google Scholar 

  12. von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78:649–672

    Article  Google Scholar 

  13. Weber J, Senior AE (2003) ATP synthesis driven by proton transport in F1F0-ATP synthase. FEBS Lett 545:61–70

    Article  CAS  PubMed  Google Scholar 

  14. Song HF, Tang ZM, Liu XW (1998) A new method for bioassay of thrombopoietin by TD-3 cell line in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi 6:154–157

    Google Scholar 

  15. Palacios R, Steinmetz M (1985) Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41:727–734

    Article  CAS  PubMed  Google Scholar 

  16. Yuan X, Cong Y, Hao J, Shan Y, Zhao Z et al (2004) Regulation of LIP level and ROS formation through interaction of H-ferritin with G-CSF receptor. J Mol Biol 339:131–144

    Article  CAS  PubMed  Google Scholar 

  17. Dunn KW, Kamocka MM, McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300(4):C723–C742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Geijsen N, Spaargaren M, Raaijmakers JA, Lammers JW, Koenderman L et al (1999) Association of RACK1 and PKCbeta with the common beta-chain of the IL-5/IL-3/GM-CSF receptor. Oncogene 18:5126–5130

    Article  CAS  PubMed  Google Scholar 

  19. Meunier C, Bordereaux D, Porteu F, Gisselbrecht S, Chretien S et al (2002) Cloning and characterization of a family of proteins associated with Mpl. J Biol Chem 277:9139–9147

    Article  CAS  PubMed  Google Scholar 

  20. Sliva D, Gu M, Zhu YX, Chen J, Tsai S et al (2000) 14-3-3zeta interacts with the alpha-chain of human interleukin 9 receptor. Biochem J 345(Pt 3):741–747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jordan EM, Breen GA (1992) Molecular cloning of an import precursor of the delta-subunit of the human mitochondrial ATP synthase complex. Biochim Biophys Acta 1130:123–126

    Article  CAS  PubMed  Google Scholar 

  22. Davis RE, Williams M (2012) Mitochondrial function and dysfunction: an update. J Pharmacol Exp Ther 342:598–607

    Article  CAS  PubMed  Google Scholar 

  23. Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26:711–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zharikov S, Shiva S (2013) Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem Soc Trans 41:118–123

    Article  CAS  PubMed  Google Scholar 

  25. Bouscary D, Lecoq-Lafon C, Chretien S, Zompi S, Fichelson S et al (2001) Role of Gab proteins in phosphatidylinositol 3-kinase activation by thrombopoietin (Tpo). Oncogene 20:2197–2204

    Article  CAS  PubMed  Google Scholar 

  26. Benaim G, Villalobo A (2002) Phosphorylation of calmodulin. Functional implications. Eur J Biochem 269:3619–3631

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxu Zhong or Yuwen Cong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Zhao, Z., Zhong, Y. et al. Identification of a new Mpl-interacting protein, Atp5d. Mol Cell Biochem 391, 85–94 (2014). https://doi.org/10.1007/s11010-014-1990-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-1990-x

Keywords

Navigation