Molecular and Cellular Biochemistry

, Volume 390, Issue 1–2, pp 281–287 | Cite as

TNFα-induced apoptosis in human myeloid cell lines HL-60 and K562 is dependent of intracellular ROS generation

  • D. González-Flores
  • A. B. Rodríguez
  • J. A. Pariente


The present study determines the role of reactive oxygen species (ROS) production and calcium signaling evoked by the tumor necrosis factor-alpha (TNFα) on apoptosis in the human leukemia HL-60 and K562 cell lines. The results show that treatment of both cell lines cells with 10 ng/mL TNFα resulted in a rise in the percentage of apoptotic cells after 6 h of treatment. It was also observed that the administration of 10 ng/mL TNFα increased intracellular ROS production, as well as a time-dependent increase in caspase-8, -3, and -9 activities. The present results also show that the pretreatment with well-known antioxidants such as trolox and N-acetyl cysteine partially reduced the caspase activation caused by the administration of TNFα. The findings suggest that TNFα-induced apoptosis is dependent on alterations in intracellular ROS generation in human leukemia HL-60 and K562 cells.


TNFα Apoptosis Antioxidants Myeloid cell lines 



This work was supported by MICINN-FEDER (BFU 2010-15049).


  1. 1.
    Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258:479–517PubMedCrossRefGoogle Scholar
  2. 2.
    Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255–260PubMedCrossRefGoogle Scholar
  3. 3.
    Ding WX, Yin XM (2004) Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J Cell Mol Med 8:445–454PubMedCrossRefGoogle Scholar
  4. 4.
    Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731PubMedCrossRefGoogle Scholar
  5. 5.
    Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Wajant H, Pzenmaier K, Scheurich P (2003) Tumor necrosis factor signalling. Cell Death Differ 10:45–65PubMedCrossRefGoogle Scholar
  7. 7.
    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am J Physiol (Cell Physiol) 287:817–833CrossRefGoogle Scholar
  8. 8.
    González D, Espino J, Bejarano I, Rodríguez AB, Pariente JA (2010) H2O2-induced caspase activation is dependent of calcium signal in HL-60 cells. Curr Signal Transd T 5(2):181–186CrossRefGoogle Scholar
  9. 9.
    Suzuki, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22:269–285PubMedCrossRefGoogle Scholar
  10. 10.
    Tan S, Sagara Y, Liu Y, Maher P, Schubert D (1998) The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141:1423–1432PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Yao K, Tan J, Gu W, Ye PP, Wang KJ (2007) Reactive oxygen species mediates the apoptosis by transforming growth factor beta(2) in human lens epithelial cells. Biochem Biophys Res Commun 354:278–283PubMedCrossRefGoogle Scholar
  12. 12.
    Lopez JJ, Salido GM, Gómez-Arteta E, Rosado JA, Pariente JA (2007) Thrombin induces apoptotic events through the generation of reactive oxygen species in human platelets. J Thromb Haemost 5:1283–1291PubMedCrossRefGoogle Scholar
  13. 13.
    Bejarano I, Lozano GM, Ortiz A, García JF, Paredes SD, Rodríguez AB, Pariente JA (2008) Caspase 3 activation in human spermatozoa in response to hydrogen peroxide and progesterone. Fertil Steril 90:1340–1347PubMedCrossRefGoogle Scholar
  14. 14.
    Han D, Hanawa N, Saberi B, Kaplowitz N (2006) Hydrogen peroxide and redox modulation sensitize primary mouse hepatocytes to TNF-induced apoptosis. Free Radic Biol Med 41:627–639PubMedCrossRefGoogle Scholar
  15. 15.
    Han D, Hanawa N, Saberi B, Kaplowitz N (2006) Mechanisms of liver injury, III: role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol 291:G1–G7PubMedCrossRefGoogle Scholar
  16. 16.
    Kaplowitz N (2002) Biochemical and cellular mechanisms of toxic liver injury. Semin Liver Dis 22:137–144PubMedCrossRefGoogle Scholar
  17. 17.
    Shen HM, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J 20:1589–1598PubMedCrossRefGoogle Scholar
  18. 18.
    Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N (2009) Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal 11(9):2245–2263PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45(3):321–334PubMedGoogle Scholar
  20. 20.
    Uğuz AC, Naziroğlu M, Espino J, Bejarano I, González D, Rodríguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232(1–3):15–23PubMedGoogle Scholar
  21. 21.
    Bejarano I, Espino J, Marchena AM, Barriga C, Paredes SD, Rodríguez AB, Pariente JA (2011) Melatonin enhances hydrogen peroxide-induced apoptosis in human promyelocytic leukaemia HL-60 cells. Mol Cell Biochem 353:167–176PubMedCrossRefGoogle Scholar
  22. 22.
    Espino J, Bejarano I, Paredes SD, Barriga C, Rodríguez AB, Pariente JA (2011) Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 51:195–206PubMedCrossRefGoogle Scholar
  23. 23.
    Bejarano I, Redondo PC, Espino J, Rosado JA, Paredes SD, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2009) Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res 46:392–400PubMedCrossRefGoogle Scholar
  24. 24.
    Messina S, Frati L, Porcellini A (2012) Oxidative stress posttranslationally regulates the expression of Ha-Ras and Ki-Ras in cultured astrocytes. Oxid Med Cell Longev. doi: 10.1155/2012/792705 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Goeddel DV, Aggarwal BB, Gray PW, Leung DW, Nedwin GE, Palladino MA, Patton JS, Pennica D, Shepard HM, Sugarman BJ, Wong GHW (1986) Tumor necrosis factors: gene structure and biological activities. Cold Spring Harb Symp Quant Biol 51:597–609PubMedCrossRefGoogle Scholar
  26. 26.
    Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190PubMedCrossRefGoogle Scholar
  27. 27.
    Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195PubMedCrossRefGoogle Scholar
  28. 28.
    Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K, Liu YC, Karin M (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124:601–613PubMedCrossRefGoogle Scholar
  29. 29.
    Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21:3964–3973PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Micheau O, Lens S, Gaide O, Alevizopoulos K, Tschopp J (2001) NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol 21:5299–5305PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Gallardo G, López-Blanco F, Ruiz de Galarreta CM, Fanjul LF (2003) HMGCoA reductase inhibition partially mediates tumor necrosis factor α-induced apoptosis in human U-937 and HL-60 cells. Biochem Biophys Res Commun 300:397–402PubMedCrossRefGoogle Scholar
  32. 32.
    Fulda S, Meyer E, Debatin K-M (2000) Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1-converting enzyme inhibitory protein expression. Cancer Res 60:3947–3956PubMedGoogle Scholar
  33. 33.
    Siripin D, Fucharoen S, Tanyong DI (2011) Nitric oxide and caspase 3 mediated cytokine induced apoptosis in acute leukemia. Asian Pac J Allergy Immunol 29(1):102–111PubMedGoogle Scholar
  34. 34.
    Kim S, Ohoka N, Okuhira K, Sai K, Nishimaki-Mogami T, Naito M (2010) Modulation of RIP1 ubiquitylation and distribution by MeBS to sensitize cancer cells to tumor necrosis factor α-induced apoptosis. Cancer Sci 101(11):2425–2429PubMedCrossRefGoogle Scholar
  35. 35.
    Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao JH, Yagita H, Doi T, Okumura K, Nakano H (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Corda S, Laplace C, Vicaut E, Duranteau J (2001) Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol 24:762–768PubMedCrossRefGoogle Scholar
  37. 37.
    Ding WX, Ni HM, DiFrancesca D, Stolz DB, Yin XM (2004) Bid-dependent generation of oxygen radicals promotes death receptor activation-induced apoptosis in murine hepatocytes. Hepatology 40:403–413PubMedCrossRefGoogle Scholar
  38. 38.
    Castedo M, Hirsch T, Susin SA, Zamzarni N, Marchetti P, Macho A, Kroemer G (1996) Sequential acquisition of mitochondrial and plasma membrane alterations during lymphocyte apoptosis. J Immunol 157:512–521PubMedGoogle Scholar
  39. 39.
    Jacobson MD, Burne JF, Raff MC (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 13:1899–1910PubMedCentralPubMedGoogle Scholar
  40. 40.
    Uguz AC, Cig B, Espino J, Bejarano I, Naziroglu M, Rodríguez AB, Pariente JA (2012) Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res 53:91–98PubMedCrossRefGoogle Scholar
  41. 41.
    Wullaert A, Heyninck K, Beyaert R (2006) Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol 72:1090–1101PubMedCrossRefGoogle Scholar
  42. 42.
    Zhao Y, Ding WX, Qian T, Watkins S, Lemasters JJ, Yin XM (2003) Bid activates multiple mitochondrial apoptotic mechanisms in primary hepatocytes after death receptor engagement. Gastroenterology 125:854–867PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. González-Flores
    • 1
  • A. B. Rodríguez
    • 1
  • J. A. Pariente
    • 1
  1. 1.Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of ScienceUniversity of ExtremaduraBadajozSpain

Personalised recommendations