Skip to main content

Advertisement

Log in

Phosphoproteome mapping of cardiomyocyte mitochondria in a rat model of heart failure

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondria are complex organelles essential to cardiomyocyte survival. Protein phosphorylation is emerging as a key regulator of mitochondrial function. In the study reported here, we analyzed subsarcolemmal (SSM) mitochondria harvested from rats who have received 4 weeks of aldosterone/salt treatment to simulate the neurohormonal profile of human congestive heart failure. Our objective was to obtain an initial qualitative inventory of the phosphoproteins in this biologic system. SSM mitochondria were harvested, and the phosphoproteome was analyzed with a gel-free bioanalytical platform. Mitochondrial proteins were digested with trypsin, and the digests were enriched for phosphopeptides with immobilized metal ion affinity chromatography. The phosphopeptides were analyzed by ion trap liquid chromatography–tandem mass spectrometry, and the phosphoproteins identified via database searches. Based on MS/MS and MS3 data, we characterized a set of 42 phosphopeptides that encompassed 39 phosphorylation sites. These peptides mapped to 26 proteins, for example, long-chain specific acyl-CoA dehydrogenase, Complex III subunit 6, and mitochondrial import receptor TOM70. Collectively, the characterized phosphoproteins belong to diverse functional modules, including bioenergetic pathways, protein import machinery, and calcium handling. The phosphoprotein panel discovered in this study provides a foundation for future differential phosphoproteome profiling toward an integrated understanding of the role of mitochondrial phosphorylation in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

ALDOST:

Aldosterone/salt treatment

CHF:

Congestive heart failure

ETC:

Electron transport chain

FAO:

Fatty acid oxidation

IMAC:

Immobilized metal ion affinity chromatography

LC-MS/MS:

Liquid chromatography–tandem mass spectrometry

MRM:

Multiple reaction monitoring

MSTE:

Mitochondriocentric signal-transducer-effector pathway

SSM:

Subsarcolemmal mitochondria

TFA:

Trifluoroacetic acid

References

  1. Kamalov G, Bhattacharya SK, Weber KT (2010) Congestive heart failure: where homeostasis begets dyshomeostasis. J Cardiovasc Pharmacol 56:320–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Sukhanov S, Semprun-Prieto L, Yoshida T, Michael TA, Higashi Y, Galvez S, Delafontaine P (2011) Angiotensin II, oxidative stress and skeletal muscle wasting. Am J Med Sci 342:143–147

    Article  PubMed Central  PubMed  Google Scholar 

  3. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT (2002) Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am J Pathol 161:1773–1781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kung G, Konstantinidis K, Kitsis RN (2011) Programmed necrosis, not apoptosis, in the heart. Circ Res 108:1017–1036

    Article  CAS  PubMed  Google Scholar 

  5. Shahbaz AU, Kamalov G, Zhao W, Zhao T, Johnson PL, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC, Weber KT (2011) Mitochondria-targeted cardioprotection in aldosteronism. J Cardiovasc Pharmacol 57:37–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cheema Y, Sherrod JN, Zhao W, Zhao T, Ahokas RA, Sun Y, Gerling IC, Bhattacharya SK, Weber KT (2011) Mitochondriocentric pathway to cardiomyocyte necrosis in aldosteronism: cardioprotective responses to carvedilol and nebivolol. J Cardiovasc Pharmacol 58:80–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ahokas RA, Warrington KJ, Gerling IC, Sun Y, Wodi LA, Herring PA, Lu L, Bhattacharya SK, Postlethwaite AE, Weber KT (2003) Aldosteronism and peripheral blood mononuclear cell activation: a neuroendocrine-immune interface. Circ Res 93:e124–e135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cheema Y, Zhao W, Zhao T, Khan MU, Green KD, Ahokas RA, Gerling IC, Bhattacharya SK, Weber KT (2012) Reverse remodeling and recovery from cachexia in rats with aldosteronism. Am J Physiol Heart Circ Physiol 303:H486–H495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gerling IC, Sun Y, Ahokas RA, Wodi LA, Bhattacharya SK, Warrington KJ, Postlethwaite AE, Weber KT (2003) Aldosteronism: an immunostimulatory state precedes proinflammatory/fibrogenic cardiac phenotype. Am J Physiol Heart Circ Physiol 285:H813–H821

    CAS  PubMed  Google Scholar 

  10. Sun Z, Hamilton KL, Reardon KF (2012) Phosphoproteomics and molecular cardiology: techniques, applications and challenges. J Mol Cell Cardiol 53:354–368

    Article  CAS  PubMed  Google Scholar 

  11. Covian R, Balaban RS (2012) Cardiac mitochondrial matrix and respiratory complex protein phosphorylation. Am J Physiol Heart Circ Physiol 303:H940–H966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Edwards AV, Cordwell SJ, White MY (2011) Phosphoproteomic profiling of the myocyte. Circ Cardiovasc Genet 4:575. doi:10.1161/CIRCGENETICS.110.957787

    Article  PubMed  Google Scholar 

  13. O’Rourke B, Van Eyk JE, Foster DB (2011) Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. Congest Heart Fail 17:269–282

    Article  PubMed  Google Scholar 

  14. Boja ES, Phillips D, French SA, Harris RA, Balaban RS (2009) Quantitative mitochondrial phosphoproteomics using iTRAQ on an LTQ-Orbitrap with high energy collision dissociation. J Proteome Res 8:4665–4675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Deng N, Zhang J, Zong C, Wang Y, Lu H, Yang P, Wang W, Young GW, Wang Y, Korge P, Lotz C, Doran P, Liem DA, Apweiler R, Weiss JN, Duan H, Ping P (2011) Phosphoproteome analysis reveals regulatory sites in major pathways of cardiac mitochondria. Mol Cell Proteomics 10(2):M110.000117. doi:10.1074/mcp.M110.000117

    Article  PubMed Central  PubMed  Google Scholar 

  16. Feng J, Zhu M, Schaub MC, Gehrig P, Roschitzki B, Lucchinetti E, Zaugg M (2008) Phosphoproteome analysis of isoflurane-protected heart mitochondria: phosphorylation of adenine nucleotide translocator-1 on Tyr194 regulates mitochondrial function. Cardiovasc Res 80:20–29

    Article  CAS  PubMed  Google Scholar 

  17. Hopper RK, Carroll S, Aponte AM, Johnson DT, French S, Shen RF, Witzmann FA, Harris RA, Balaban RS (2006) Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry 45:2524–2536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lam MP, Scruggs SB, Kim TY, Zong C, Lau E, Wang D, Ryan CM, Faull KF, Ping P (2012) An MRM-based workflow for quantifying cardiac mitochondrial protein phosphorylation in murine and human tissue. J Proteomics 75:4602–4609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lam MP, Lau E, Scruggs SB, Wang D, Kim TY, Liem DA, Zhang J, Ryan CM, Faull KF, Ping P (2013) Site-specific quantitative analysis of cardiac mitochondrial protein phosphorylation. J Proteomics 81:15–23

    Article  CAS  PubMed  Google Scholar 

  20. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT (1990) Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 67:1355–1364

    Article  CAS  PubMed  Google Scholar 

  21. Sun Y, Ramires FJ, Weber KT (1997) Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res 35:138–147

    Article  CAS  PubMed  Google Scholar 

  22. Gandhi MS, Deshmukh PA, Kamalov G, Zhao T, Zhao W, Whaley JT, Tichy JR, Bhattacharya SK, Ahokas RA, Sun Y, Gerling IC, Weber KT (2008) Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism. J Cardiovasc Pharmacol 52:245–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chen L, Fang B, Giorgianni F, Gingrich JR, Beranova-Giorgianni S (2011) Investigation of phosphoprotein signatures of archived prostate cancer tissue specimens via proteomic analysis. Electrophoresis 32:1984–1991

    Article  CAS  PubMed  Google Scholar 

  24. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101:12130–12135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10:5354–5362

    Article  CAS  PubMed  Google Scholar 

  26. Zhao X, Leon IR, Bak S, Mogensen M, Wrzesinski K, Hojlund K, Jensen ON (2011) Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics 10(1):M110.000299. doi:10.1074/mcp.M110.000299

    Article  PubMed Central  PubMed  Google Scholar 

  27. Chen L, Giorgianni F, Beranova-Giorgianni S (2010) Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry. J Proteome Res 9:174–178

    Article  CAS  PubMed  Google Scholar 

  28. Beranova-Giorgianni S, Zhao Y, Desiderio DM, Giorgianni F (2006) Phosphoproteomic analysis of the human pituitary. Pituitary 9:109–120

    Article  CAS  PubMed  Google Scholar 

  29. Boersema PJ, Mohammed S, Heck AJ (2009) Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom 44:861–878

    Article  CAS  PubMed  Google Scholar 

  30. Gnad F, Forner F, Zielinska DF, Birney E, Gunawardena J, Mann M (2010) Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria. Mol Cell Proteomics 9:2642–2653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Linn TC, Pettit FH, Reed LJ (1969) Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 62:234–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356:1140–1151

    Article  PubMed  Google Scholar 

  33. Smits P, Smeitink J, van den Heuvel L (2010) Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010:737385

    Article  PubMed Central  PubMed  Google Scholar 

  34. Dorn GW, Scorrano L (2010) Two close, too close: sarcoplasmic reticulum-mitochondrial crosstalk and cardiomyocyte fate. Circ Res 107:689–699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhang J, Li X, Mueller M, Wang Y, Zong C, Deng N, Vondriska TM, Liem DA, Yang JI, Korge P, Honda H, Weiss JN, Apweiler R, Ping P (2008) Systematic characterization of the murine mitochondrial proteome using functionally validated cardiac mitochondria. Proteomics 8:1564–1575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 110:1646–1660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Borkowski BJ, Cheema Y, Shahbaz AU, Bhattacharya SK, Weber KT (2011) Cation dyshomeostasis and cardiomyocyte necrosis: the Fleckenstein hypothesis revisited. Eur Heart J 32:1846–1853

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the UTHSC College of Pharmacy Seed Grant (SBG) and by NIH grants R01-HL73043 and R01-HL90867 (KTW). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Funds for the LTQ mass spectrometer were provided by the NIH Shared Instrumentation Grant S10RR16679, and by the UTHSC College of Pharmacy.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarka Beranova-Giorgianni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgianni, F., Usman Khan, M., Weber, K.T. et al. Phosphoproteome mapping of cardiomyocyte mitochondria in a rat model of heart failure. Mol Cell Biochem 389, 159–167 (2014). https://doi.org/10.1007/s11010-013-1937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1937-7

Keywords

Navigation