Molecular and Cellular Biochemistry

, Volume 389, Issue 1–2, pp 85–98 | Cite as

Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis

  • Abdelkader E. AshourEmail author
  • Adel R. Abd-Allah
  • Hesham M. Korashy
  • Sabry M. Attia
  • Abdelrahman Z. Alzahrani
  • Quaiser Saquib
  • Saleh A. Bakheet
  • Hala E. Abdel-Hamied
  • Shazia Jamal
  • Arun K. Rishi


Hepatocellular carcinoma (HCC) is the fourth most common solid tumor worldwide. The chemokine interleukin-8 (IL-8) is overexpressed in HCC and is a potential target for therapy. Although the transcription factor NF-κB regulates IL-8 expression, and while thymoquinone (TQ; the most bioactive constituent of black seed oil) inhibits NF-κB activity, the precise mechanisms by which TQ regulates IL-8 and cancer cell growth remain to be clarified. Here, we report that TQ inhibited growth of HCC cells in a dose- and time-dependent manner, caused G2M cell cycle arrest, and stimulated apoptosis. Apoptosis was substantiated by activation of caspase-3 and -9, as well as cleavage of poly(ADP-ribose)polymerase. TQ treatments inhibited expression of NF-κB and suppressed IL-8 and its receptors. TQ treatments caused increased levels of reactive oxygen species (ROS) and mRNAs of oxidative stress-related genes, NQO1 and HO-1. Pretreatment of HepG2 cells with N-acetylcysteine, a scavenger of ROS, prevented TQ-induced cell death. TQ treatment stimulated mRNA expression of pro-apoptotic Bcl-xS and TRAIL death receptors, and inhibited expression of the anti-apoptotic gene Bcl-2. TQ enhanced TRAIL-induced death of HepG2 cells, in part by up-regulating TRAIL death receptors, inhibiting NF-κB and IL-8 and stimulating apoptosis. Altogether, these findings provide insights into the pleiotropic molecular mechanisms of TQ-dependent suppression of HCC cell growth and underscore potential of this compound as anti-HCC drug.


Thymoquinone HCC IL-8 Oxidative stress NF-κB TRAIL Apoptosis 



This work was supported by a grant from King Abdulaziz city for science and technology (KACST; Grant No.: ARP-29-265) and the Department of Veterans Affairs Merit Review grant (AKR).

Conflict of interest

We have no personal or financial conflict of interest and have not entered into any agreement that could interfere with our access to the data on the research, or upon our ability to analyze the data independently, to prepare manuscripts, and to publish them.


  1. 1.
    Badary OA, Gamal El-Din AM (2001) Inhibitory effects of thymoquinone against 20-methylcholanthrene-induced fibrosarcoma tumorigenesis. Cancer Detect Prev 25(4):362–368PubMedGoogle Scholar
  2. 2.
    Badary OA, Nagi MN, al-Shabanah OA, al-Sawaf HA, al-Sohaibani MO, al-Bekairi AM (1997) Thymoquinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol 75(12):1356–1361PubMedCrossRefGoogle Scholar
  3. 3.
    Banerjee S, Padhye S, Azmi A, Wang Z, Philip PA, Kucuk O, Sarkar FH, Mohammad RM (2010) Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr Cancer 62(7):938–946. doi: 10.1080/01635581.2010.509832 PubMedCrossRefGoogle Scholar
  4. 4.
    Banerjee S, Padhye S, Azmi A, Wang Z, Philip PA, Kucuk O, Sarkar FH, Mohammad RM (2010) Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr Cancer 62(7):938–946. doi: 10.1080/01635581.2010.509832 PubMedCrossRefGoogle Scholar
  5. 5.
    Badary OA, Al-Shabanah OA, Nagi MN, Al-Rikabi AC, Elmazar MM (1999) Inhibition of benzo(a)pyrene-induced forestomach carcinogenesis in mice by thymoquinone. Eur J Cancer Prev 8(5):435–440PubMedCrossRefGoogle Scholar
  6. 6.
    Hoofnagle JH (2004) Hepatocellular carcinoma: summary and recommendations. Gastroenterology 127(5 Suppl 1):S319–S323PubMedCrossRefGoogle Scholar
  7. 7.
    McGlynn KA, London WT (2005) Epidemiology and natural history of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol 19(1):3–23. doi: 10.1016/j.bpg.2004.10.004 PubMedCrossRefGoogle Scholar
  8. 8.
    Abdo AA, Karim HA, Al Fuhaid T, Sanai FM, Kabbani M, Al Jumah A, Burak K (2006) Saudi Gastroenterology Association guidelines for the diagnosis and management of hepatocellular carcinoma: summary of recommendations. Ann Saudi Med 26(4):261–265PubMedGoogle Scholar
  9. 9.
    Tannapfel A, Wittekind C (2002) Genes involved in hepatocellular carcinoma: deregulation in cell cycling and apoptosis. Virchows Arch 440(4):345–352. doi: 10.1007/s00428-002-0617-x PubMedCrossRefGoogle Scholar
  10. 10.
    Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089):1798–1801PubMedCrossRefGoogle Scholar
  11. 11.
    Ren Y, Poon RT, Tsui HT, Chen WH, Li Z, Lau C, Yu WC, Fan ST (2003) Interleukin-8 serum levels in patients with hepatocellular carcinoma: correlations with clinicopathological features and prognosis. Clin Cancer Res 9(16 Pt 1):5996–6001PubMedGoogle Scholar
  12. 12.
    Akiba J, Yano H, Ogasawara S, Higaki K, Kojiro M (2001) Expression and function of interleukin-8 in human hepatocellular carcinoma. Int J Oncol 18(2):257–264PubMedGoogle Scholar
  13. 13.
    Blight KJ, McKeating JA, Rice CM (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76(24):13001–13014PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Korashy HM, El-Kadi AO (2004) Differential effects of mercury, lead and copper on the constitutive and inducible expression of aryl hydrocarbon receptor (AHR)-regulated genes in cultured hepatoma Hepa 1c1c7 cells. Toxicology 201(1–3):153–172. doi: 10.1016/j.tox.2004.04.011 PubMedCrossRefGoogle Scholar
  15. 15.
    Bueno-da-Silva AE, Brumatti G, Russo FO, Green DR, Amarante-Mendes GP (2003) Bcr-Abl-mediated resistance to apoptosis is independent of constant tyrosine-kinase activity. Cell Death Differ 10(5):592–598. doi: 10.1038/sj.cdd.4401210 PubMedCrossRefGoogle Scholar
  16. 16.
    Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139(2):271–279Google Scholar
  17. 17.
    van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP (1996) A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 24(2):131–139. doi: 10.1002/(SICI)1097-0320(19960601)24:2<131:AID-CYTO5>3.0.CO;2-M PubMedCrossRefGoogle Scholar
  18. 18.
    Clarke RG, Lund EK, Johnson IT, Pinder AC (2000) Apoptosis can be detected in attached colonic adenocarcinoma HT29 cells using annexin V binding, but not by TUNEL assay or sub-G0 DNA content. Cytometry 39(2):141–150. doi: 10.1002/(SICI)1097-0320(20000201)39:2<141:AID-CYTO7>3.0.CO;2-O PubMedCrossRefGoogle Scholar
  19. 19.
    Nagi MN, Alam K, Badary OA, al-Shabanah OA, al-Sawaf HA, al-Bekairi AM (1999) Thymoquinone protects against carbon tetrachloride hepatotoxicity in mice via an antioxidant mechanism. Biochem Mol Biol Int 47(1):153–159PubMedGoogle Scholar
  20. 20.
    Sethi G, Ahn KS, Aggarwal BB (2008) Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res MCR 6(6):1059–1070. doi: 10.1158/1541-7786.MCR-07-2088 CrossRefGoogle Scholar
  21. 21.
    Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6(6):593–597PubMedCrossRefGoogle Scholar
  22. 22.
    Murray AW (1992) Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359(6396):599–604. doi: 10.1038/359599a0 PubMedCrossRefGoogle Scholar
  23. 23.
    El-Mahdy MA, Zhu Q, Wang QE, Wani G, Wani AA (2005) Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myeloblastic leukemia HL-60 cells. Int J Cancer 117(3):409–417. doi: 10.1002/ijc.21205 PubMedCrossRefGoogle Scholar
  24. 24.
    Gurung RL, Lim SN, Khaw AK, Soon JF, Shenoy K, Mohamed Ali S, Jayapal M, Sethu S, Baskar R, Hande MP (2010) Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS ONE 5(8):e12124. doi: 10.1371/journal.pone.0012124 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Gilmore TD (1999) The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 18(49):6842–6844. doi: 10.1038/sj.onc.1203237 PubMedCrossRefGoogle Scholar
  26. 26.
    Campbell LM, Maxwell PJ, Waugh DJ (2013) Rationale and means to target pro-inflammatory interleukin-8 (CXCL8) signaling in cancer. Pharmaceuticals (Basel) 6(8):929–959. doi: 10.3390/ph6080929 CrossRefGoogle Scholar
  27. 27.
    Kim YS, Schwabe RF, Qian T, Lemasters JJ, Brenner DA (2002) TRAIL-mediated apoptosis requires NF-kappaB inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology 36(6):1498–1508. doi: 10.1053/jhep.2002.36942 PubMedGoogle Scholar
  28. 28.
    Verstrepen L, Carpentier I, Verhelst K, Beyaert R (2009) ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol 78(2):105–114. doi: 10.1016/j.bcp.2009.02.009 PubMedCrossRefGoogle Scholar
  29. 29.
    Schneider-Stock R, Fakhoury IH, Zaki AM, El-Baba CO, Gali-Muhtasib HU (2013) Thymoquinone: fifty years of success in the battle against cancer models. Drug Discov Today. doi: 10.1016/j.drudis.2013.08.021 PubMedGoogle Scholar
  30. 30.
    Abdollahi T, Robertson NM, Abdollahi A, Litwack G (2003) Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3. Cancer Res 63(15):4521–4526PubMedGoogle Scholar
  31. 31.
    Hussain AR, Ahmed M, Ahmed S, Manogaran P, Platanias LC, Alvi SN, Al-Kuraya KS, Uddin S (2011) Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radical Biol Med 50(8):978–987. doi: 10.1016/j.freeradbiomed.2010.12.034 CrossRefGoogle Scholar
  32. 32.
    Choi C, Kutsch O, Park J, Zhou T, Seol DW, Benveniste EN (2002) Tumor necrosis factor-related apoptosis-inducing ligand induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells. Mol Cell Biol 22(3):724–736PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Gali-Muhtasib H, Diab-Assaf M, Boltze C, Al-Hmaira J, Hartig R, Roessner A, Schneider-Stock R (2004) Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol 25(4):857–866PubMedGoogle Scholar
  34. 34.
    Li Q, Zhao LY, Zheng Z, Yang H, Santiago A, Liao D (2011) Inhibition of p53 by adenovirus type 12 E1B-55K deregulates cell cycle control and sensitizes tumor cells to genotoxic agents. J Virol. doi: 10.1128/JVI.00492-11 Google Scholar
  35. 35.
    Vikhanskaya F, Lee MK, Mazzoletti M, Broggini M, Sabapathy K (2007) Cancer-derived p53 mutants suppress p53-target gene expression–potential mechanism for gain of function of mutant p53. Nucleic Acids Res 35(6):2093–2104. doi: 10.1093/nar/gkm099 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    el Arafa SA, Zhu Q, Shah ZI, Wani G, Barakat BM, Racoma I, El-Mahdy MA, Wani AA (2011) Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat Res 706(1–2):28–35. doi: 10.1016/j.mrfmmm.2010.10.007 PubMedCentralCrossRefGoogle Scholar
  37. 37.
    Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619PubMedCrossRefGoogle Scholar
  38. 38.
    LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17(25):3247–3259. doi: 10.1038/sj.onc.1202569 PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK (2008) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13(12):1465–1478. doi: 10.1007/s10495-008-0278-6 PubMedCrossRefGoogle Scholar
  40. 40.
    Mansour MA, Nagi MN, El-Khatib AS, Al-Bekairi AM (2002) Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase in different tissues of mice: a possible mechanism of action. Cell Biochem Funct 20(2):143–151. doi: 10.1002/cbf.968 PubMedCrossRefGoogle Scholar
  41. 41.
    Bianchet MA, Faig M, Amzel LM (2004) Structure and mechanism of NAD[P]H: quinone acceptor oxidoreductases (NQO). Methods Enzymol 382:144–174. doi: 10.1016/S0076-6879(04)82009-3 PubMedCrossRefGoogle Scholar
  42. 42.
    Mayer B, Oberbauer R (2003) Mitochondrial regulation of apoptosis. News Physiol Sci 18:89–94PubMedGoogle Scholar
  43. 43.
    Lee MW, Park SC, Kim JH, Kim IK, Han KS, Kim KY, Lee WB, Jung YK, Kim SS (2002) The involvement of oxidative stress in tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in HeLa cells. Cancer Lett 182(1):75–82PubMedCrossRefGoogle Scholar
  44. 44.
    Nioi P, Hayes JD (2004) Contribution of NAD(P)H: quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat Res 555(1–2):149–171. doi: 10.1016/j.mrfmmm.2004.05.023 PubMedCrossRefGoogle Scholar
  45. 45.
    Talalay P, Dinkova-Kostova AT (2004) Role of nicotinamide quinone oxidoreductase 1 (NQO1) in protection against toxicity of electrophiles and reactive oxygen intermediates. Methods Enzymol 382:355–364. doi: 10.1016/S0076-6879(04)82019-6 PubMedCrossRefGoogle Scholar
  46. 46.
    Kohle C, Badary OA, Nill K, Bock-Hennig BS, Bock KW (2005) Serotonin glucuronidation by Ah receptor- and oxidative stress-inducible human UDP-glucuronosyltransferase (UGT) 1A6 in Caco-2 cells. Biochem Pharmacol 69(9):1397–1402. doi: 10.1016/j.bcp.2005.02.010 PubMedCrossRefGoogle Scholar
  47. 47.
    Riley RJ, Workman P (1992) DT-diaphorase and cancer chemotherapy. Biochem Pharmacol 43(8):1657–1669PubMedCrossRefGoogle Scholar
  48. 48.
    Wilkening S, Stahl F, Bader A (2003) Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos 31(8):1035–1042. doi: 10.1124/dmd.31.8.1035 PubMedCrossRefGoogle Scholar
  49. 49.
    De Haan LH, Boerboom AM, Rietjens IM, van Capelle D, De Ruijter AJ, Jaiswal AK, Aarts JM (2002) A physiological threshold for protection against menadione toxicity by human NAD(P)H:quinone oxidoreductase (NQO1) in Chinese hamster ovary (CHO) cells. Biochem Pharmacol 64(11):1597–1603PubMedCrossRefGoogle Scholar
  50. 50.
    Applegate LA, Luscher P, Tyrrell RM (1991) Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res 51(3):974–978PubMedGoogle Scholar
  51. 51.
    Gong P, Cederbaum AI, Nieto N (2003) Increased expression of cytochrome P450 2E1 induces heme oxygenase-1 through ERK MAPK pathway. J Biol Chem 278(32):29693–29700. doi: 10.1074/jbc.M304728200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Abdelkader E. Ashour
    • 1
    Email author
  • Adel R. Abd-Allah
    • 1
    • 2
  • Hesham M. Korashy
    • 1
  • Sabry M. Attia
    • 1
    • 2
  • Abdelrahman Z. Alzahrani
    • 1
  • Quaiser Saquib
    • 3
  • Saleh A. Bakheet
    • 1
  • Hala E. Abdel-Hamied
    • 4
  • Shazia Jamal
    • 5
    • 7
  • Arun K. Rishi
    • 5
    • 6
  1. 1.Department of Pharmacology and ToxicologyCollege of Pharmacy, King Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Pharmacology and Toxicology, College of PharmacyAl-Azhar UniversityCairoEgypt
  3. 3.College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Department of Pathology, College of Medicine for GirlsAl-Azhar UniversityCairoEgypt
  5. 5.Department of Oncology, Karmanos Cancer InstituteWayne State UniversityDetroitUSA
  6. 6.John D. Dingell Veterans Affairs Medical CenterDetroitUSA
  7. 7.Crescent School of Life Science, BS Abdur Rahman UniversityChennaiIndia

Personalised recommendations