Skip to main content
Log in

Polymorphisms in glutathione S-transferase are risk factors for perioperative acute myocardial infarction after cardiac surgery: a preliminary study

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In the present study we explored glutathione S-transferase (GST) polymorphisms in selected patients who experienced accelerated myocardial injury following open heart surgery and compared these to a control group of patients without postoperative complications. 758 Patients were enrolled from which 132 patients were selected to genotype analysis according to exclusion criteria. Patients were divided into the following groups: Group I: control patients (n = 78) without and Group II.: study patients (n = 54) with evidence of perioperative myocardial infarction. Genotyping for GSTP1 A (Ile105Ile/Ala113Ala), B (Ile105Val/Ala113Ala) and C (Ile105Val/Ala113Val) alleles was performed by using real-time-PCR. The heterozygous AC allele was nearly three times elevated (18.5 vs. 7.7 %) in the patients who suffered postoperative myocardial infarction compared to controls. Contrary, we found allele frequency of 14.1 % for homozygous BB allele in the control group whereas no such allele combination was present in the study group. These preliminary results may suggest the protective role for the B and C alleles during myocardial oxidative stress whereas the A allele may represent predisposing risk for cellular injury in patients undergoing cardiac surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yau JM, Alexander JH, Hafley G et al (2008) Impact of perioperative myocardial infarction on angiographic and clinical outcomes following coronary artery bypass grafting (from project of ex-vivo vein graft engineering via transfection (PREVENT) IV). Am J Cardiol 102:546–551

    Article  PubMed  Google Scholar 

  2. Mangano DT (1997) Effects of acadesine on myocardial infarction, stroke, and death following surgery. A meta-analysis of the 5 international randomized trials. The multicenter study of perioperative ischemia (McSPI) research group. JAMA 277:325–332

    Article  CAS  PubMed  Google Scholar 

  3. Nalysnyk L, Fahrbach K, Reynolds MW (2003) Adverse events in coronary artery bypass graft (CABG) trials: a systematic review and analysis. Heart 89:767–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Thielmann M, Massoudy P, Schmermund A et al (2005) Diagnostic discrimination between graft-related and non-graft-related perioperative myocardial infarction with cardiac troponin I after coronary artery bypass surgery. Eur Heart J 26:2440–2447

    Article  CAS  PubMed  Google Scholar 

  5. Mohammed AA, Agnihotri AK, van Kimmenade RR et al (2009) Prospective, comprehensive assessment of cardiac troponin T testing after coronary artery bypass graft surgery. Circulation 120:843–850

    Article  CAS  PubMed  Google Scholar 

  6. Alexander JH, Hafley G, Harrington RA et al (2005) Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA 294:2446–2454

    Article  PubMed  Google Scholar 

  7. Podgoreanu MV, White WD, Morris RW et al (2006) Perioperative genetics and safety outcomes study (PEGASUS) Investigative team. Inflammatory gene polymorphisms and risk of postoperative myocardial infarction after cardiac surgery. Circulation 114:275–281

    Article  Google Scholar 

  8. Liu Kuang-Yu, Muehlschlegel Jochen D, Perry Tjörvi E et al (2010) Common genetic variants on chromosome 9p21 predict perioperative myocardial injury after coronary artery bypass graft surgery. J Thorac Cardiovasc Surg 139:483–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Roth E, Hejjel L (2003) Oxygen free radicals in heart disease. In: Pugsley MK (ed) Cardiac Drug Development Guide. Humana Press, New jersy, pp 47–66

    Chapter  Google Scholar 

  10. Elahi MM, Khan JS, Matata BM (2006) Deleterious effects of cardiopulmonary bypass in coronary artery surgery and scientific interpretation of off-pump’s logic. Acute Card Care 8:196–209

    Article  PubMed  Google Scholar 

  11. Butler J, Rocker GM, Westaby S (1993) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 55:552–559

    Article  CAS  PubMed  Google Scholar 

  12. Hall RI, Smith MS, Rocker G (1997) The systemic inflammatory response to cardiopulmonary bypass: pathophysiological, therapeutic, and pharmacological considerations. Anesth Analg 85:766–782

    CAS  PubMed  Google Scholar 

  13. Wan S, LeClerc JL, Vincent JL (1997) Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 112:676–692

    Article  CAS  PubMed  Google Scholar 

  14. Sharma R, Gupta S, Singhal SS, Ahmad H, Haque A, Awasthi YC (1991) Independent segregation of glutathione S-transferase and fatty acid ethyl ester synthase from pancreas and other human tissues. Biochem J 275:507–513

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Ali-Osman F, Akande O, Antoun G et al (1997) Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants: evidence for differential catalytic activity of the encoded proteins. J Biol Chem 272:10004–10012

    Article  CAS  PubMed  Google Scholar 

  16. Volzke H, Engel J, Kleine V et al (2002) Angiotensin I-converting enzyme insertion/deletion polymorphism and cardiac mortality and morbidity after coronary artery bypass graft surgery. Chest 122:31–36

    Article  CAS  PubMed  Google Scholar 

  17. Fox Amanda A, Collard Charles D, Shernan Stanton K et al (2009) Natriuretic peptide system gene variants are associated with ventricular dysfunction after coronary artery bypass grafting. Anesthesiology 110:738–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Emiroglu Ozan, Durdu Serkan, Egin Yonca et al (2011) Thrombotic gene polymorphisms and postoperative outcome after coronary artery bypass graft surgery. J Cardiothorac Surg 6:120

    Article  PubMed Central  PubMed  Google Scholar 

  19. Tekeli A, Isbir S, Ergen A et al (2008) APE1 and XRCC3 polymorphisms and myocardial infarction. In Vivo 22:477–479

    CAS  PubMed  Google Scholar 

  20. Lobato RL, White WD, Mathew JP et al (2011) Thrombomodulin gene variants are associated with increased mortality after coronary artery bypass surgery in replicated analyses. Circulation 124:S143–S148

    Article  PubMed Central  PubMed  Google Scholar 

  21. Eifert S, Rasch A, Beiras-Fernandez A et al (2009) Gene polymorphisms in APOE, NOS3, and LIPC genes may be risk factors for cardiac adverse events after primary CABG. J Cardiothorac Surg 4:46

    Article  PubMed Central  PubMed  Google Scholar 

  22. Frey UH, Kottenberg E, Kamler M et al (2011) Genetic interactions in the b-adrenoceptor/G-protein signal transduction pathway and survival after coronary artery bypass grafting: a pilot study. Br J Anaesth 107:869–878

    Article  CAS  PubMed  Google Scholar 

  23. Stępień E, Krawczyk S, Kapelak B et al (2011) Effect of the E-selectin gene polymorphism (S149R) on platelet activation and adverse events after coronary artery surgery. Arch Med Res 42:375–381

    Article  PubMed  Google Scholar 

  24. Muehlschlegel JD, Liu KY, Perry TE et al (2010) Chromosome 9p21 variant predicts mortality after coronary artery bypass graft surgery. Circulation 122:S60–S65

    Article  PubMed Central  PubMed  Google Scholar 

  25. Virani SS, Brautbar A, Lee VV et al (2012) Chromosome 9p21 single nucleotide polymorphisms are not associated with recurrent myocardial infarction in patients with established coronary artery disease. Circ J 76:950–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Isbir S, Ergen A, Yilmaz H et al (2008) Effect of Ala16Val genetic polymorphism of MnSOD on antioxidant capacity and inflammatory response in open heart surgery. In Vivo 22:147–151

    CAS  PubMed  Google Scholar 

  27. Kornblit B, Munthe-Fog L, Madsen HO et al (2008) Association of HMGB1 polymorphisms with outcome in patients with systemic inflammatory response syndrome. Crit Care 12:R83

    Article  PubMed Central  PubMed  Google Scholar 

  28. Wypasek E, Stepien E, Kot M et al (2012) Fibrinogen beta-chain -C148T polymorphism is associated with increased fibrinogen, C-reactive protein, and interleukin-6 in patients undergoing coronary artery bypass grafting. Inflammation 35:429–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Perry TE, Muehlschlegel JD, Liu KY et al (2009) C-Reactive protein gene variants are associated with postoperative C-reactive protein levels after coronary artery bypass surgery. BMC Med Genet 10:38

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co- ordinately regulated defence against oxidative stress. Free Radical Res 31:273–300

    Article  CAS  Google Scholar 

  31. Suvakov S, Damjanovic T, Stefanovic A et al (2013) Glutathione S-transferase A1, M1, P1 and T1 null or low-activity genotypes are associated with enhanced oxidative damage among haemodialysis patients. Nephrol Dial Transplant 28:202–212

    Article  CAS  PubMed  Google Scholar 

  32. McIlwain CC, Townsend DM, Tew KD (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25:1639–1648

    Article  CAS  PubMed  Google Scholar 

  33. Ruscoe JE, Rosario LA, Wang T et al (2001) Pharmacologic or genetic manipulation of glutathione S-transferase P1-1 (GSTpi) influences cell proliferaton pathways. J Pharmacol Exp Ther 298:339–345

    CAS  PubMed  Google Scholar 

  34. Christie JD, Aplenc R, DeAdrade J et al (2005) Donor glutathione S-transferase genotype is assotiated with primary graft dysfunction following lung transplantation. J Heart Lung Transplant 24:S80

    Article  Google Scholar 

  35. Hadjiliadis D, Lingaraju R, Mendez J et al (2007) Donor glutathione S-transferase (GST) mu null genotype in lung transplant recipients is assotiated with increased incidence of bronchiolitis obliterans (BOS) independent of acute rejection. J Heart Lung Transplant 26:S108

    Article  Google Scholar 

  36. Cora T, Tokac M, Acar H et al (2013) Glutathione S-transferase M1 and T1 genotypes and myocardial infarction. Mol Biol Rep 40:3263–3267

    Article  CAS  PubMed  Google Scholar 

  37. Wilson MH, Grant PJ, Kain K et al (2003) Association between the risk of coronary artery disease in South Asians and a deletion polymorphism in glutathione S-transferase M1. Biomarkers 8:43–50

    Article  CAS  PubMed  Google Scholar 

  38. Wilson MH, Grant PJ, Hardie LJ et al (2000) Glutathione S-transferase M1 null genotype is associated with a decreased risk of myocardial infarction. FASEB J 14:791–796

    CAS  PubMed  Google Scholar 

  39. Nomani H, Mozafari H, Ghobadloo SM et al (2011) The association between GSTT1, M1, and P1 polymorphisms with coronary artery disease in Western Iran. Mol Cell Biochem 354:181–187

    Article  CAS  PubMed  Google Scholar 

  40. Moscow JA, Fairchild CR, Madden MJ et al (1989) Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res 49:1422–1428

    CAS  PubMed  Google Scholar 

  41. Allan JM, Wild CP, Rollinson S et al (2001) Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA 98:11592–11597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Tuna G, Kulaksiz Erkmen G, Dalmizrak O et al (2010) Inhibition characteristics of hypericin on rat small intestine glutathione-S-transferases. Chem Biol Interact: 18859–18865

  43. Henderson CJ, Wolf CR, Kitteringham N et al (2000) Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci USA 97:12741–12745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian Science Research Fund OTKA K78434 and the TÁMOP 4.2.2./B-10/1-2010-0029. The study was approved by TUKEB (3727.316-3255/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovacs, V., Gasz, B., Balatonyi, B. et al. Polymorphisms in glutathione S-transferase are risk factors for perioperative acute myocardial infarction after cardiac surgery: a preliminary study. Mol Cell Biochem 389, 79–84 (2014). https://doi.org/10.1007/s11010-013-1929-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1929-7

Keywords

Navigation