Skip to main content

Advertisement

Log in

The activation of TLR7 regulates the expression of VEGF, TIMP1, MMP2, IL-6, and IL-15 in Hela cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) play important roles in activation of immunoreaction and tumor development. Toll-like receptor 7 (TLR7), one of the TLRs binding with single-stranded RNA, activates intracellular pathways and stimulates the release of proinflammatory cytokines, chemokines. In this study, we investigated the impact of the TLR7-signaling pathway on the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP2), tissue inhibitor of metalloproteinase 1 (TIMP1), interleukin 6 (IL-6), and interleukin 15 (IL-15), which have been testified to refer to the immunomodulating and tumor progression. We confirmed that the TLR7 was expressed by Hela cells, despite the abundance was weak. Gardiquimod, one of the TLR7 ligands, can promote these five genes expression in varying degrees. After stimulating with gardiquimod, the expression of the IL-15V1, 3 increased about 4.5 times on RNA level, the other expression was only up-regulated about 2 times. We also discovered that gardiquimod could activate the MAPK/ERK- and PI3K/AKT-signaling pathways, and the specific inhibitors studies indicate that, the effect of gardiquimod on these genes expression is mainly or partially dependent on the activation of these two signaling pathways. To sum up, the activation of TLR7 signaling pathway may modulate some genes expression in Hela cells and may contribute to the pathogenesis of the cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397

    Article  CAS  PubMed  Google Scholar 

  2. McGettrick AF, O’Neill LA (2007) Toll-like receptors: key activators of leucocytes and regulator of haematopoiesis. Br J Haematol 139:185–193

    Article  CAS  PubMed  Google Scholar 

  3. Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S (2008) Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3:352–363

    Article  CAS  PubMed  Google Scholar 

  4. Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H (2008) TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 27(2):218–224

    Article  CAS  PubMed  Google Scholar 

  5. Chen YC, Giovannucci E, Kraft P, Lazarus R, Hunter DJ (2007) Association between Toll-like receptor gene cluster (TLR6, TLR1, and TLR10) and prostate cancer. Cancer Epidemiol Biomarkers Prev 16(10):1982–1989

    Article  CAS  PubMed  Google Scholar 

  6. Tsan MF (2006) Toll-like receptors, inflammation and cancer. Semin Cancer Biol 1:32–37

    Article  Google Scholar 

  7. Sheyhidin I, Nabi G, Hasim A, Zhang RP, Ainiwaer J, Ma H, Wang H (2011) Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma. World J Gastroenterol 17(32):3745–3751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 6:499

    Article  Google Scholar 

  9. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303(5663):1526–1529

    Article  CAS  PubMed  Google Scholar 

  10. Ma F, Zhang J, Zhang J, Zhang C (2010) The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice. Cell Mol Immunol 5:381–388

    Article  Google Scholar 

  11. Guo JS, Friedman SL (2010) Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair 3:21

    Article  PubMed Central  PubMed  Google Scholar 

  12. Alves MP, Neuhaus V, Guzylack-Piriou L, Ruggli N, McCullough KC, Summerfield A (2007) Toll-like receptor 7 and MyD88 knockdown by lentivirus-mediated RNA interference to porcine dendritic cell subsets. Gene Ther 14(10):836–844

    Article  CAS  PubMed  Google Scholar 

  13. Mitchell D, Olive C (2010) Regulation of Toll-like receptor-induced chemokine production in murine dendritic cells by mitogen-activated protein kinases. Mol Immunol 47(11–12):2065–2073

    Article  CAS  PubMed  Google Scholar 

  14. Shi Y, White D, He L, Miller RL, Spaner DE (2007) Toll-like receptor-7 tolerizes malignant B cells and enhances killing by cytotoxic agents. Cancer Res 67(4):1823–1831

    Article  CAS  PubMed  Google Scholar 

  15. Ochi A, Graffeo CS, Zambirinis CP, Rehman A, Hackman M, Fallon N, Barilla RM, Henning JR, Jamal M, Rao R, Greco S, Deutsch M, Medina-Zea MV, Bin Saeed U, Ego-Osuala MO, Hajdu C, Miller G (2012) Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Investig 122(11):4118–4129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Liu H, Schwartz MJ, Hwang DH, Scherr DS (2008) Tumour growth inhibition by an imidazoquinoline is associated with c-Myc down-regulation in urothelial cell carcinoma. BJU Int 101(7):894–901

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Shi J, Feng J, Klocker H, Lee C, Zhang J (2004) Type IV collagenase (matrix metalloproteinase-2 and -9) in prostate cancer. Prostate Cancer Prostatic Dis 7(4):327–332

    Article  PubMed  Google Scholar 

  18. Guruvayoorappan C, Kuttan G (2008) Amentoflavone inhibits experimental tumor metastasis through a regulatory mechanism involving MMP-2, MMP-9, prolyl hydroxylase, lysyl oxidase, VEGF, ERK-1, ERK-2, STAT-1, NM23 and cytokines in lung tissues of C57BL/6 mice. Immunopharmacol Immunotoxicol 30:711–727

    Article  CAS  PubMed  Google Scholar 

  19. Chen RX, Xia YH, Xue TC, Ye SL (2011) Osteopontin promotes hepatocellular carcinoma invasion by up-regulating MMP-2 and uPA expression. Mol Biol Rep 38(6):3671–3677

    Article  CAS  PubMed  Google Scholar 

  20. Ma J, Sawai H, Ochi N, Matsuo Y, Xu D, Yasuda A, Takahashi H, Wakasugi T, Takeyama H (2009) PTEN regulate angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic cancer cells. Mol Cell Biochem 331:161–171

    Article  CAS  PubMed  Google Scholar 

  21. Bramhall SR, Neoptolemos JP, Stamp GW, Lemoine NR (1997) Imbalance of expression of matrix metallo pr oteinases (MMPs) and tissue inhibitors of the matrix metalloproteinases (TIMPs) in human pancreatic carcinoma. J Pathol 182(3):347–355

    Article  CAS  PubMed  Google Scholar 

  22. Bloomston M, Shafii A, Zervos EE, Rojiani A, Rosemurgy AS (2002) MMP-2 and TIMP-1 are derived from, not in response to, pancreatic cancer. J Surg Res 102(1):35–38

    Article  CAS  PubMed  Google Scholar 

  23. Coward JI, Kulbe H (2012) The role of interleukin-6 in gynaecological malignancies. Cytokine Growth Factor Rev 23(6):333–342

    Article  CAS  PubMed  Google Scholar 

  24. Jakobisiak M, Golab J, Lasek W (2011) Interleukin 15 as a promising candidate for tumor immunotherapy. Cytokine Growth Factor Rev 22(2):99–108

    Article  CAS  PubMed  Google Scholar 

  25. Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2(6):401–409

    CAS  PubMed  Google Scholar 

  26. Chang ZL (2010) Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res 59(10):791–808

    Article  CAS  PubMed  Google Scholar 

  27. Chuang TH, Ulevitch RJ (2000) Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 11(3):372–378

    CAS  PubMed  Google Scholar 

  28. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human Toll-like receptors and related genes. Biol Pharm Bull 28(5):886–892

    Article  CAS  PubMed  Google Scholar 

  29. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N (1999) Human papillo-mavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  CAS  PubMed  Google Scholar 

  30. zur Hausen H (2009) Papillomaviruses in the causation of human cancers—a brief historical account. Virology 384(2):260–265

    Article  CAS  PubMed  Google Scholar 

  31. Smits EL, Ponsaerts P, Berneman ZN, Van Tendeloo VF (2008) The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13(8):859–875

    Article  CAS  PubMed  Google Scholar 

  32. Schon M, Bong AB, Drewniok C, Herz J, Geilen CC, Reifen-berger J, Benninghoff B, Slade HB, Gollnick H, Schön MP (2003) Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod. J Natl Cancer Inst 95(15):1138–1149

    Article  PubMed  Google Scholar 

  33. Chang S, Kodys K, Szabo G (2010) Impaired expression and function of Toll-like receptor 7 in hepatitis C virus infection in human hepatoma cells. Hepatology 51(1):35–42

    Article  CAS  PubMed  Google Scholar 

  34. Spaner DE, Masellis A (2007) Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia. Leukemia 21(1):53–60

    Article  CAS  PubMed  Google Scholar 

  35. Miller RL, Gerster JF, Owens ML, Slade HB, Tomai MA (1999) Imiquimod applied topically a novel immune response modifier and new class of drug. Int J Immunopharmacol 21(1):1–14

    Article  CAS  PubMed  Google Scholar 

  36. Stanley MA (2002) Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol 7:571–577

    Article  Google Scholar 

  37. Tagaya Y, Kurys G, Thies TA et al (1997) Generation of secretable and nonsecretable interleukin 15 isoforms through alternate usage of signal peptides. Proc Natl Acad Sci USA 94:14444–14449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wennstrom S, Downward J (1999) Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol 6:4279–4288

    Google Scholar 

  39. Yu X, Song M, Chen J, Zhu G, Zhao G, Wang H, Hunag L (2009) Hepatocyte growth factor protects endothelial progenitor cell from damage of low-density lipoprotein cholesterol via the PI3K/Akt signaling pathway. Mol Biol Rep 37(5):2423–2429

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Grants from the General Program of National Natural Science Foundation of China (81271748), and the Foundation for Doctors, Anhui Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Quan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Cheng, FW., Wang, F. et al. The activation of TLR7 regulates the expression of VEGF, TIMP1, MMP2, IL-6, and IL-15 in Hela cells. Mol Cell Biochem 389, 43–49 (2014). https://doi.org/10.1007/s11010-013-1925-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1925-y

Keywords

Navigation