Skip to main content
Log in

Hormonal imbalance and disturbances in carbohydrate metabolism associated with chronic feeding of high sucrose low magnesium diet in weanling male wistar rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study was designed to determine chronic effect of high sucrose low magnesium (HSLM) diet in weanling rats on plasma thyroid profile, catecholamines and activities of key hepatic glycolytic, and gluconeogenic enzymes. Compared to control diet fed group, significantly elevated levels of plasma triiodothyronine, tetraiodothyronine, catecholamines (epinephrine, norepinephrine, and dopamine) and activity of hepatic glycolytic (hexokinase and glucokinase), and gluconeogenic (glucose-6-phosphatase) enzymes were observed in high sucrose and low magnesium fed groups. However, HSLM diet had an additive effect on all these three parameters. The study thus, assumes significance as it shows that hormonal imbalance and disorders in carbohydrate metabolism at an early stage of development can be due to dietary modification or due to deficiency of key element magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chaudhary DP, Boparai RK, Sharma R, Bansal DD (2004) Studies on the development of an insulin resistant rat model by chronic feeding of low magnesium high sucrose diet. Magnes Res 17(4):293–300

    CAS  PubMed  Google Scholar 

  2. Boparai RK, Kiran R, Bansal DD (2007) Insinuation of exacerbated oxidative stress in sucrose-fed rats with a low dietary intake of magnesium: evidence of oxidative damage to proteins. Free Radic Res 41(9):981–989

    Article  CAS  PubMed  Google Scholar 

  3. Chaudhary DP, Boparai RK, Bansal DD (2007) Implications of oxidative stress in high sucrose low magnesium diet fed rats. Eur J Nutr 46(7):383–390

    Article  CAS  PubMed  Google Scholar 

  4. Garg M, Kiran R, Bansal DD (2011) High sucrose low magnesium diet modulates the expression of PI3 K and ERK2 in different tissues of weanling rats. Am J Biomed Sci 3(1):11–22

    Article  CAS  Google Scholar 

  5. Eley J, Himms-Hagen J (1989) Brown adipose tissue of mice with GTG induced obesity: altered circadian control. Am J Physiol 256:E773–E779

    CAS  PubMed  Google Scholar 

  6. Ferguson DC, Hoenig M et al (1985) Triiodothyronine production by the perfused rat kidney is reduced by diabetes mellitus but not by fasting. Endocrinology 117:64–70

    Article  CAS  PubMed  Google Scholar 

  7. Tobin BW, Beard JL (1990) Interactions of iron deficiency and exercise training relative to tissue norepinephrine turnover, triiodothyronine production and metabolic rate in rats. J Nutr 120:900–908

    CAS  PubMed  Google Scholar 

  8. Beard JL, Tobin BW et al (1989) Evidence for thyroid hormone deficiency in iron deficient anemic rats. J Nutr 119:772–778

    CAS  PubMed  Google Scholar 

  9. Chopra IJ (1981) Triiodothyronines in health and disease, monographs in endocrinology, vol 18. Springer, New York

    Book  Google Scholar 

  10. Oppenheimer JH (1979) Thyroid hormone action at the cellular level. Science 203:971–979

    Article  CAS  PubMed  Google Scholar 

  11. Hoch FL (1962) Biochemical actions of thyroid hormones. Physiol Rev 42:605–673

    CAS  PubMed  Google Scholar 

  12. Freedland RA, Krebs HA (1967) The effect of thyroxine treatment on the rate of gluconeogenesis in the perfused rat liver. Biochem J 104:45P

    CAS  PubMed  Google Scholar 

  13. Glock GE, McLean P, Whitehead JK (1956) Pathways of glucose catabolism in rat liver in alloxan diabetes and hyperthyroidism. Biochem J 63(3):520–524

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Masoro EJ (1962) Biochemical mechanisms related to the homeostatic regulation of lipogenesis in animals. J Lipid Res 3:149–164

    CAS  Google Scholar 

  15. Brown J, McLean P, Greenbaum AL (1966) Influence of thyroxine and luteinizing hormone on some enzymes concerned with lipogenesis in adipose tissue, testis and adrenal gland. Biochem J 101(1):197–203

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Caddell J, Kupiecki R, Proxmire DL, Satoh P, Hutchinson B (1986) Plasma catecholamines in acute magnesium deficiency in weanling rats. J Nutr 116:1896–1901

    CAS  PubMed  Google Scholar 

  17. Shafrir E (2000) Overnutrition in spiny mice (Acomys cahirinus): b cells expansion leading to rupture and overt diabetes on fat-rich diet and protective energy-wasting elevation in thyroid hormone on sucrose-rich diet. Diabetes Metab Res Rev 16:94–105

    Article  CAS  PubMed  Google Scholar 

  18. Hoch FL (1971) Energy transformation in mammals regulatory mechanisms. W. B. Saunders Company, Philadelphia/London/Toronto, pp 83–108

    Google Scholar 

  19. Pilkis SJ (1975) Method Enzymol. In: Wood WA (ed) vol 42, Academic Press, New York, p 31–39

  20. Davidson AL, Arion WJ (1987) Factors underlying significant underestimations of glucokinase activity in crude liver extracts: physiological implications of higher cellular activity. Arch Biochem Biophys 253:156–167

    Article  CAS  PubMed  Google Scholar 

  21. Joshi MD, Jagannathan V (1966) Hexokinase. Method. Enzymol, vol 9. In: Wood WA (eds). New York, Academic Press: 371-375. Journal of Endocrinology 164:307–314

  22. Harper AE (1970) Glucose-6-phosphatase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Academic Press, New York, pp 788–793

    Google Scholar 

  23. Fiske CH, Subarrow Y (1925) The colorimetric determination of phosphorous. J Biol Chem 66:375–400

    CAS  Google Scholar 

  24. Church WH (2005) Column chromatography analysis of brain tissue: an advanced laboratory exercise for neuroscience majors. J Undergrad Neurosci Edu 3(2):A36–A41

    Google Scholar 

  25. Bishnoi M, Chopra K, Kulkarni SK (2007) Neurochemical changes associated with chronic administration of typical antipsychotics and its relationship with tardive dyskinesia. Methods Find Exp Clin Pharmacol 29(3):211–216

    Article  CAS  PubMed  Google Scholar 

  26. Young RA, Braverman LE, Rajatanavin R (1982) Low protein-high carbohydrate diet induces alterations in the serum thyronine-binding proteins in the rat. Endocrinology 110:1607–1612

    Article  CAS  PubMed  Google Scholar 

  27. Corradino RA, Parker HE (1962) Magnesium and thyroid function in rat. J Nutr 77:455–458

    CAS  PubMed  Google Scholar 

  28. Hemmings SJ, Takaya S (2003) Sucrose feeding effects inhibition of gamma-glutamyltranspeptidase in the liver of the rat: possible mediation by thyroid hormone. Int J Biochem Cell Biol 35:51–60

    Article  CAS  PubMed  Google Scholar 

  29. Davidson MB, Chopra IJ (1979) Effect of Carbohydrate and Noncarbohydrate Sources of Calories on Plasma 3,5,3′-Triiodothyronine Concentrations in Man. J Clin Endocrinol Metab 48:577–581

    Article  CAS  PubMed  Google Scholar 

  30. Rosenbaum M, Hirsch J, Murphy E, Leibel RL (2000) Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion and thyroid function. Am J Clin Nutr 71:1421–1432

    CAS  PubMed  Google Scholar 

  31. Watson KV, Moldow CF, Ogburn PL, Jacob HS (1986) Magnesium sulfate: rationale for its use in preeclampsia. Proc Natl Acad Sci 83:1075–1078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. James MF (1989) Use of magnesium sulphate in the anaesthetic management of phaeochromocytoma: a review of 17 anaesthetics. Br J Anaesth 62:616–623

    Article  CAS  PubMed  Google Scholar 

  33. Murasato Y, Harada Y, Ikeda M, Nakashima Y, Hayashida Y (1999) Effect of magnesium deficiency on autonomic circulatory regulation in conscious rats. Hypertension 34:247–252

    Article  CAS  PubMed  Google Scholar 

  34. Schaftingen VE, Vandercammen A (1989) Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes. Eur J Biochem 179:173–177

    Article  PubMed  Google Scholar 

  35. Lin WJ, Anderson JW (1977) Effects of high sucrose or starch-bran diets on glucose and lipid metabolism of normal and diabetic rats. J Nutr 107:584–595

    CAS  PubMed  Google Scholar 

  36. Hansen R, Pilkis SJ, Krahl ME (1970) Effect of insulin on the synthesis in vitro of hexokinase in rat epididymal adipose tissue. Endocrinology 86(1):57–65

    Article  CAS  PubMed  Google Scholar 

  37. Spence JT, Pitot HC (1979) Glucokinase activity. J Biol Chem 254:12331–12360

    CAS  PubMed  Google Scholar 

  38. Katz NR, Nauck MA, Wilson PT (1979) Trace elements and diabetes. Biochem Biophys Res Comm 88:23–29

    Article  CAS  PubMed  Google Scholar 

  39. Sibrowski S, Seitz HJ (1984) The chemistry of chromium. J Biol Chem 259:343–346

    CAS  PubMed  Google Scholar 

  40. Stifel FB, Rosenweig NS, Zakim D, Herman RH (1968) Dietary regulation of glycolytic enzymes. I. Adaptive changes in rat jejunum. Biochim Biophys Acta 170(2):221–227

    Article  CAS  PubMed  Google Scholar 

  41. Commerford SR, Ferniza JB, Bizeau ME, Thresher JS, Willis WT, Pagliassotti MJ (2002) Diets enriched in sucrose or fat increase gluconeogenesis and G-6-Pase but not basal glucose production in rats. Am J Physiol Endocrinol Metab 283:E545–E555

    CAS  PubMed  Google Scholar 

  42. Schaftingen VE, Detheux M, DaCunha MV (1994) Short term control of glucokinase activity: role of a regulatory protein. FASEB J 8:414–419

    PubMed  Google Scholar 

  43. Pagliassotti MJ, Shahrokhi KA, Moscarello M (1994) Involvement of liver and skeletal muscle in sucrose-induced insulin resistance: dose-response studies. Am J Physiol Regulatory Integr Comp Physiol 266:R1637–R1644

    CAS  Google Scholar 

  44. Pagliassotti MJ, Prach PA (1997) Increased net hepatic glucose output from gluconeogenic precursors after high-sucrose diet feeding in male rats. Am J Physiol Regulatory Integr Comp Physiol 272:R526–R531

    CAS  Google Scholar 

  45. Bizeau ME, Thresher JS, Pagliassotti MJ (2001) A high-sucrose diet increases gluconeogenic capacity in isolated periportal and perivenous rat hepatocytes. Am J Physiol Endocrinol Metab 280:695–702

    Google Scholar 

  46. Thresher JS, Podolin DA, Wei Y, Mazzeo RS, Pagliassotti MJ (2000) Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am J Physiol Regul Integr Comp Physiol 279:R1334–R1340

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to UGC and CSIR, New Delhi, India for providing financial assistance for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devi Dayal Bansal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, M., Mehra, P. & Bansal, D.D. Hormonal imbalance and disturbances in carbohydrate metabolism associated with chronic feeding of high sucrose low magnesium diet in weanling male wistar rats. Mol Cell Biochem 389, 35–41 (2014). https://doi.org/10.1007/s11010-013-1924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1924-z

Keywords

Navigation