Skip to main content
Log in

Silencing of TBC1D15 promotes RhoA activation and membrane blebbing

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Membrane blebs are round-shaped dynamic membrane protrusions that occur under many physiological conditions. Membrane bleb production is primarily controlled by actin cytoskeletal rearrangements mediated by RhoA. Tre2–Bub2–Cdc16 (TBC) domain-containing proteins are negative regulators of the Rab family of small GTPases and contain a highly conserved TBC domain. In this report, we show that the expression of TBC1D15 is associated with the activity of RhoA and the production of membrane blebs. Depletion of TBC1D15 induced activation of RhoA and membrane blebbing, which was abolished by the addition of an inhibitor for RhoA signaling. In addition, we show that TBC1D15 is required for the accumulation of RhoA at the equatorial cortex for the ingression of the cytokinetic furrow during cytokinesis. Our results demonstrate a novel role for TBC1D15 in the regulation of RhoA during membrane blebbing and cytokinesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181:879–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Charras GT (2008) A short history of blebbing. J Microsc 231:466–478

    Article  CAS  PubMed  Google Scholar 

  3. Sheetz MP, Sable JE, Döbereiner HG (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434

    Article  CAS  PubMed  Google Scholar 

  4. Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435:365–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Cunningham CC (1995) Actin polymerization and intracellular solvent flow in cell surface blebbing. J Cell Biol 129:1589–1599

    Article  CAS  PubMed  Google Scholar 

  6. Charras GT, Coughlin M, Mitchison TJ, Mahadevan L (2008) Life and times of a cellular bleb. Biophys J 94:1836–1853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gadea G, de Toledo M, Anguille C, Roux P (2007) Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 178:23–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kaibuchi K, Kuroda S, Amano M (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68:459–486

    Article  CAS  PubMed  Google Scholar 

  10. Amano M, Nakayama M, Kaibuchi K (2010) Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 67:545–554

    Article  CAS  Google Scholar 

  11. Pinner S, Sahai E (2008) PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat Cell Biol 10:127–137

    Article  CAS  PubMed  Google Scholar 

  12. Cartier-Michaud A, Malo M, Charrière-Bertrand C, Gadea G, Anguille C, Supiramaniam A, Lesne A, Delaplace F, Hutzler G, Roux P, Lawrence DA, Barlovatz-Meimon G (2012) Matrix-bound PAI-1 supports cell blebbing via RhoA/ROCK1 signaling. PLoS ONE 7:e32204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. de Toledo M, Anguille C, Roger L, Roux P, Gadea G (2012) Cooperative anti-invasive effect of Cdc42/Rac1 activation and ROCK inhibition in SW620 colorectal cancer cells with elevated blebbing activity. PLoS ONE 7:e48344

    Article  PubMed Central  PubMed  Google Scholar 

  14. Laser-Azogui A, Diamant-Levi T, Israeli S, Roytman Y, Tsarfaty I (2013) Met-induced membrane blebbing leads to amoeboid cell motility and invasion. Oncogene [Epub ahead of print]

  15. Segev N (2001) Ypt and Rab GTPases: insight into functions through novel interactions. Curr Opin Cell Biol 13:500–511

    Article  CAS  PubMed  Google Scholar 

  16. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  CAS  PubMed  Google Scholar 

  17. Barr F, Lambright DG (2010) Rab GEFs and GAPs. Curr Opin Cell Biol 22:461–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fukuda M (2011) TBC proteins: GAPs for mammalian small GTPase Rab? Biosci Rep 31:159–168

    Article  CAS  PubMed  Google Scholar 

  19. Frasa MA, Koessmeier KT, Ahmadian MR, Braga VM (2012) Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 13:67–73

    Article  CAS  PubMed  Google Scholar 

  20. Albert S, Will E, Gallwitz D (1999) Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases. EMBO J 18:5216–5225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pan X, Eathiraj S, Munson M, Lambright DG (2006) TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442:303–306

    Article  CAS  PubMed  Google Scholar 

  22. Corbett MA, Bahlo M, Jolly L, Afawi Z, Gardner AE, Oliver KL, Tan S, Coffey A, Mulley JC, Dibbens LM, Simri W, Shalata A, Kivity S, Jackson GD, Berkovic SF, Gecz J (2010) A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24. Am J Hum Genet 87:371–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Falace A, Filipello F, La Padula V, Vanni N, Madia F, De Pietri Tonelli D, de Falco FA, Striano P, Dagna Bricarelli F, Minetti C, Benfenati F, Fassio A, Zara F (2010) TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy. Am J Hum Genet 87:365–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Shin N, You KT, Lee H, Kim WK, Song M, Choi HJ, Rhee H, Nam SW, Kim H (2011) Identification of frequently mutated genes with relevance to nonsense mediated mRNA decay in the high microsatellite instability cancers. Int J Cancer 128:2872–2880

    Article  CAS  PubMed  Google Scholar 

  25. Zhang XM, Walsh B, Mitchell CA, Rowe T (2005) TBC domain family, member 15 is a novel mammalian Rab GTPase-activating protein with substrate preference for Rab7. Biochem Biophys Res Commun 335:154–161

    Article  CAS  PubMed  Google Scholar 

  26. Onoue K, Jofuku A, Ban-Ishihara R, Ishihara T, Maeda M, Koshiba T, Itoh T, Fukuda M, Otera H, Oka T, Takano H, Mizushima N, Mihara K, Ishihara N (2013) Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology. J Cell Sci 126(Pt 1):176–185

    Article  CAS  PubMed  Google Scholar 

  27. Feldman DE, Chen C, Punj V, Machida K (2013) The TBC1D15 oncoprotein controls stem cell self-renewal through destabilization of the Numb-p53 complex. PLoS ONE 8:e57312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hyodo T, Ito S, Hasegawa H, Asano E, Maeda M, Urano T, Takahashi M, Hamaguchi M, Senga T (2012) Misshapen-like kinase 1 (MINK1) is a novel component of striatin-interacting phosphatase and kinase (STRIPAK) and is required for the completion of cytokinesis. J Biol Chem 287:25019–25029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Piekny A, Werner M, Glotzer M (2005) Cytokinesis: welcome to the Rho zone. Trends Cell Biol 15:651–658

    Article  CAS  PubMed  Google Scholar 

  30. Jordan SN, Canman JC (2012) Rho GTPases in animal cell cytokinesis: an occupation by the one percent. Cytoskeleton (Hoboken) 69:919–930

    Article  CAS  Google Scholar 

  31. Matozaki T, Nakanishi H, Takai Y (2000) Small G-protein networks: their crosstalk and signal cascades. Cell Signal 12:515–524

    Article  CAS  PubMed  Google Scholar 

  32. Kosako H, Yoshida T, Matsumura F, Ishizaki T, Narumiya S, Inagaki M (2000) Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow. Oncogene 19:6059–6064

    Article  CAS  PubMed  Google Scholar 

  33. Matsumura F (2005) Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol 215:371–377

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the Division of Cancer Biology for helpful discussions and technical assistances. This research was partially funded by a grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Senga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahara, Y., Maeda, M., Hasegawa, H. et al. Silencing of TBC1D15 promotes RhoA activation and membrane blebbing. Mol Cell Biochem 389, 9–16 (2014). https://doi.org/10.1007/s11010-013-1921-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1921-2

Keywords

Navigation