Skip to main content
Log in

Effects of γ-irradiation on Na,K-ATPase in cardiac sarcolemma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previous studies showed that adverse effect of ionizing radiation on the cardiovascular system is beside other factors mostly mediated by reactive oxygen and nitrogen species, which deplete antioxidant stores. One of the structures highly sensitive to radicals is the Na,K-ATPase the main system responsible for extrusion of superfluous Na+ out of the cell which utilizes the energy derived from ATP. The aim of present study was the investigation of functional properties of cardiac Na,K-ATPase in 20-week-old male rats 6 weeks after γ-irradiation by a dose 25 Gy (IR). Irradiation induced decrease of systolic blood pressure from 133 in controls to 85 mmHg in IR group together with hypertrophy of right ventricle (RV) and hypotrophy of left ventricle (LV). When activating the cardiac Na,K-ATPase with substrate, its activity was lower in IR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed a decrease of the maximum velocity (V max) by 40 % with no changes in the value of Michaelis–Menten constant (K m). During activation with Na+, we observed a decrease of the enzyme activity in hearts from IR at all tested Na+ concentrations. The value of V max decreased by 38 %, and the concentration of Na+ that gives half maximal reaction velocity (K Na) increased by 62 %. This impairment in the affinity of the Na+-binding site together with decreased number of active Na,K-ATPase molecules, as indicated by lowered V max values, are probably responsible for the deteriorated efflux of the excessive Na+ from the intracellular space in hearts of irradiated rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gomez GA, Park JJ, Panahon AM, Parthasarathy KL, Pearce J, Reese P, Bakshi S, Henderson ES (1983) Heart size and function after radiation therapy to the mediastinum in patients with Hodgkin’s disease. Cancer Treat Rep 67:1099–10103

    CAS  PubMed  Google Scholar 

  2. Friedrich SA, Unverdorben M, Kunkel B, Dunst J (1996) The late cardiac sequelae after mantle-field irradiation. The results in Erlangen’s patient caseload. Strahlenther Onkol 172:19–24

    CAS  PubMed  Google Scholar 

  3. Schultz-Hector S (1992) Radiation-induced heart disease: review of experimental data on dose response and pathogenesis. Int J Radiat Biol 61:149–160

    Article  CAS  PubMed  Google Scholar 

  4. Stewart JR, Fajardo LF, Gillette SM, Constine LS (1995) Radiation injury to the heart. Int J Radiat Oncol Biol Phys 31:1205–1211

    Article  CAS  PubMed  Google Scholar 

  5. Hooning MJ, Botma A, Aleman BM, Baaijens MH, Bartelink H, Klijn JG, Taylor CW, van Leeuwen FE (2007) Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst 99:365–375

    Article  PubMed  Google Scholar 

  6. Swerdlow AJ, Higgins CD, Smith P, Cunningham D, Hancock BW, Horwich A, Hoskin PJ, Lister A, Radford JA, Rohatiner AZ, Linch DC (2007) Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. J Natl Cancer Inst 99:206–214

    Article  PubMed  Google Scholar 

  7. Baker JE, Fish BL, Su J, Haworth ST, Strande JL, Komorowski RA, Migrino RQ, Doppalapudi A, Harmann L, Allen Li X, Hopewell JW, Moulder JE (2009) 10 Gy total body irradiation increases risk of coronary sclerosis, degeneration of heart structure and function in a rat model. Int J Radiat Biol 85(12):1089–1100. doi:10.3109/09553000903264473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wondergem J, van der Laarse A, van Ravels FJ, van Wermeskerken AM, Verhoeve HR, de Graaf BW, Leer JW (1991) In vitro assessment of cardiac performance after irradiation using an isolated working rat heart preparation. Int J Radiat Biol 59(4):1053–1068

    Article  CAS  PubMed  Google Scholar 

  9. Franken NA, Hollaar L, Bosker FJ, van Ravels FJ, van der Laarse A, Wondergem J (1993) Effects of in vivo heart irradiation on myocardial energy metabolism in rats. Radiat Res 134(1):79–85

    Article  CAS  PubMed  Google Scholar 

  10. Franken NA, van der Laarse A, Bosker FJ, Reynart IW, van Ravels FJ, Strootman E, Wondergem J (1992) Time dependent changes in myocardial norepinephrine concentration and adrenergic receptor density following X-irradiation of the rat heart. Int J Radiat Oncol Biol Phys 24(4):721–727

    Article  CAS  PubMed  Google Scholar 

  11. Kruse JJ, Strootman EG, Bart CI, Visser A, Leer JW, Wondergem J (2002) Radiation-induced changes in gene expression and distribution of atrial natriuretic peptide (ANP) in different anatomical regions of the rat heart. Int J Radiat Biol 78(4):297–304

    Article  CAS  PubMed  Google Scholar 

  12. Lebrun F, Francois A, Vergnet M, Lebaron-Jacobs L, Gourmelon P, Griffiths NM (1998) Ionizing radiation stimulates muscarinic regulation of rat intestinal mucosal function. Am J Physiol 275:G1333–G1340

    CAS  PubMed  Google Scholar 

  13. Balabanli B, Türközkan N, Akmansu M, Polat M (2006) Role of free radicals on mechanism of radiation nephropathy. Mol Cell Biochem 293(1–2):183–186

    Article  CAS  PubMed  Google Scholar 

  14. Moreira OC, Oliveira VH, Benedicto LBF, Nogueira CM, Mignaco JA, Fontes CFL, Barbosa LA (2008) Effects of gamma-irradiation on the membrane ATPases of human erythrocytes from transfusional blood concentrates. Ann Hematol 87(2):113–119

    Article  CAS  PubMed  Google Scholar 

  15. McNamara DB, Sulakhe PV, Singh JN, Dhalla NS (1974) Properties of heart sarcolemmal Na+–K+ ATPase. J Biochem 75:795–803

    CAS  PubMed  Google Scholar 

  16. Vrbjar N, Soos J, Ziegelhöffer A (1984) Secondary structure of heart sarcolemmal proteins during interaction with metallic cofactors of (Na++K+)-ATPase. Gen Physiol Biophys 3:317–325

    CAS  PubMed  Google Scholar 

  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  18. Taussky HH, Shorr EE (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202:675–685

    CAS  PubMed  Google Scholar 

  19. Soloviev AI, Stefanov AV, Tishkin SM, Khromov AS, Parshikov AV, Ivanova IV, Gurney AM (2002) Saline containing phosphatidylcholine liposomes possess the ability to restore endothelial function damaged resulting from gamma-irradiation. J Physiol Pharmacol 53:701–712

    CAS  PubMed  Google Scholar 

  20. Kyrychenko S, Tishkin S, Dosenko V, Ivanova I, Novokhatska T, Soloviev A (2011) The BK(Ca) channels deficiency as a possible reason for radiation-induced vascular hypercontractility. Vascul Pharmacol 56(3–4):142–149. doi:10.1016/j.vph.2011.12.005

    PubMed  Google Scholar 

  21. Ward WF, Solliday NH, Molteni A, Port CD (1983) Radiation injury in rat lung. II. Angiotensin-converting enzyme activity. Radiat Res 96(2):294–300

    Article  CAS  PubMed  Google Scholar 

  22. Ward WF, Molteni A, Ts’Ao CH, Solliday NH (1987) Pulmonary endothelial dysfunction induced by unilateral as compared to bilateral thoracic irradiation in rats. Radiat Res 111(1):101–106

    Article  CAS  PubMed  Google Scholar 

  23. Ghobadi G, Bartelds B, van der Veen SJ, Dickinson MG, Brandenburg S, Berger RM, Langendijk JA, Coppes RP, van Luijk P (2012) Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension. Thorax 67(4):334–341. doi:10.1136/thoraxjnl-2011-200346

    Article  CAS  PubMed  Google Scholar 

  24. Adaramoye OA, Adeadara IA, Farombi EO (2012) Possible ameliorative effects of kolaviron against reproductive toxicity in sub-lethally whole body gamma-irradiated rats. Exp Toxicol Pathol 64:379–385. doi:10.1016/j.etp.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  25. Ravingerová T, Džurba A, Vrbjar N, Tribulová N, Ziegelhöffer A, Slezák J (1994) Free oxygen radicals-induced impairment of hearth function: the role of Na, K-ATPase. Pharmacol (Life Sci Adv) 13:133–140

    Google Scholar 

  26. Zolotarjova N, Ho C, Mellgren RL, Askari A, Huang WH (1994) Different sensitivities of native and oxidized forms of Na+, K+-ATPase to intracellular proteinases. Biochim Biophys Acta 1192:125–131

    Article  CAS  PubMed  Google Scholar 

  27. Charlemagne D, Orlowski J, Oliviero P, Rannou F, Sainte Beuve C, Swynghedauw B, Lane LK (1994) Alteration of Na, K-ATPase subunit mRNA and protein levels in hypertrophied rat heart. J Biol Chem 269(2):1541–1547

    CAS  PubMed  Google Scholar 

  28. Zahler R, Sun W, Ardito T, Kashgarian M (1996) Na-K-ATPase alpha-isoform expression in heart and vascular endothelia: cellular and developmental regulation. Am J Physiol 270(1 Pt 1):C361–C371

    CAS  PubMed  Google Scholar 

  29. Zahler R, Gilmore-Hebert M, Sun W, Benz EJ (1996) Na, K-ATPase isoform gene expression in normal and hypertrophied dog heart. Basic Res Cardiol 91(3):256–266

    Article  CAS  PubMed  Google Scholar 

  30. Zahler R, Sun W, Ardito T, Zhang ZT, Kocsis JD, Kashgarian M (1996) The alpha3 isoform protein of the Na+, K+-ATPase is associated with the sites of cardiac and neuromuscular impulse transmission. Circ Res 78(5):870–879

    Article  CAS  PubMed  Google Scholar 

  31. Rezende DC, Pôças ES, Muzi-Filho H, Cunha VM, Caricati-Neto A, Jurkiewicz A, Noël F, Quintas LE (2013) Mechanisms associated to impaired activity of cardiac P-type ATPases in endothelial nitric oxide synthase knockout mice. J Physiol Biochem 69(2):207–214

    Article  CAS  PubMed  Google Scholar 

  32. Quintas LE, Noël F, Wibo M (2007) Na+/K+-ATPase alpha isoforms expression in stroke-prone spontaneously hypertensive rat heart ventricles: effect of salt loading and lacidipine treatment. Eur J Pharmacol 565(1–3):151–157

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Li Y, Feng Q, Arnold M, Peng T (2009) Calpain activation contributes to hyperglycaemia-induced apoptosis in cardiomyocytes. Cardiovasc Res 84:100–110

    Article  CAS  PubMed  Google Scholar 

  34. Liu C, Bai Y, Chen Y, Wang Y, Sottejeau Y, Liu L, Li X, Lingrel JB, Malhotra D, Cooper CJ, Shapiro JI, Xie ZJ, Tian J (2012) Reduction of Na/K-ATPase potentiates marinobufagenin-induced cardiac dysfunction and myocyte apoptosis. J Biol Chem 287(20):16390–16398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Slovak Grant Agencies: VEGA-2/0141/13, VEGA-2/0207/11, and APVV-0241/11. The authors thank to Mrs. Z. Hradecká for her careful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vrbjar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mézešová, L., Vlkovičová, J., Kaločayová, B. et al. Effects of γ-irradiation on Na,K-ATPase in cardiac sarcolemma. Mol Cell Biochem 388, 241–247 (2014). https://doi.org/10.1007/s11010-013-1915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1915-0

Keywords

Navigation