Molecular and Cellular Biochemistry

, Volume 387, Issue 1–2, pp 113–121 | Cite as

Identification of peroxiredoxin-5 in bovine cauda epididymal sperm

  • Subir K. Nagdas
  • Teresa Buchanan
  • Samir Raychoudhury


Developing spermatozoa require a series of posttesticular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation-dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5 kDa wheat germ agglutinin (WGA)-binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA-stained bands, the presence of a 17.5 kDa WGA-binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5 kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5 kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide.


Bovine sperm Epididymis Glycoproteins Peroxiredoxin-5 


  1. 1.
    Yanagimachi R (1993) Mammalian Fertilization. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven, New York, pp 189–317Google Scholar
  2. 2.
    Marcello MR, Singaravelu G, Singson A (2013) Fertilization. Adv Exp Med Biol 757:321–350PubMedCrossRefGoogle Scholar
  3. 3.
    Aitken RJ, Nixon B, Minjie L, Koppers AJ, Baker MA (2007) Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl 9:554–564PubMedCrossRefGoogle Scholar
  4. 4.
    Baker MA, Nixon B, Naumovski N, Aitken RJ (2012) Proteomic insights into the maturation and capacitation of mammalian spermatozoa. Syst Biol Reprod Med 58:211–217PubMedCrossRefGoogle Scholar
  5. 5.
    Gatti JL, Castella S, Dacheux F, Ecroyd H, Metayer S, Thimon V, Dacheux JL (2004) Post-testicular sperm environment and fertility. Anim Reprod Sci 82–83:321–339PubMedCrossRefGoogle Scholar
  6. 6.
    Dacheux JL, Belleannee C, Jones R, Labas V, Belghazi M, Guyonnet B, Druart X, Gatti JL (2009) Mammalian epididymal proteome. Mol Cell Endocrinol 306:45–50PubMedCrossRefGoogle Scholar
  7. 7.
    Bedford JM (1975) Maturation, transport, and fate of spermatozoa in the epididymis. In: Greep RO, Astwood EB (eds) Handbook of physiology: endocrinology, male reproductive system. Waverly, Washington, DC, pp 303–317Google Scholar
  8. 8.
    Hamilton DW (1975) Structure and function of the epithelium lining the ductuli efferentes, ductus epididymidis, and ductus deferens in the rat. In: Greep RO, Astwood EB (eds) Handbook of physiology: endocrinology, male reproductive system. Waverly, Washington, DC, pp 259–301Google Scholar
  9. 9.
    Orgebin-Crist M-C, Danzo BJ, Davies J (1975) Endocrine control of the development and maintenance of sperm fertilizing ability in the epididymis. In: Greep RO, Astwood EB (eds) Handbook of physiology: endocrinology, male reproductive system. Waverly, Washington, DC, pp 319–338Google Scholar
  10. 10.
    Olson GE, Orgebin-Crist MC (1982) Sperm surface changes during epididymal maturation. Ann NY Acad Sci 383:372–391PubMedCrossRefGoogle Scholar
  11. 11.
    Cooper TG (2007) Sperm maturation in the epididymis: a new look at an old problem. Asian J Androl 9:533–539PubMedCrossRefGoogle Scholar
  12. 12.
    Eddy EM, O’Brien DA, Welch JE (1991) Mammalian sperm development in vivo and invitro. In: Om W (ed) Elements of mammalian fertilization. CRC, Boca Raton, pp 1–28Google Scholar
  13. 13.
    Dacheux JL, Dacheux F, Paquignon M (1989) Changes in sperm surface membrane and luminal protein fluid content during epididymal transit in the boar. Biol Reprod 40:633–651CrossRefGoogle Scholar
  14. 14.
    Belleannee C, Thimon V, Sullivan R (2012) Region-specific gene expression in the epididymis. Cell Tissue Res 349:717–731PubMedCrossRefGoogle Scholar
  15. 15.
    Geussova G, Peknicova J, Capkova J, Kalab P, Moos J, Philimonenko VV, Hozak P (1997) Monoclonal antibodies to canine intra-acrosomal proteins recognizing acrosomal status during capacitation and acrosome reaction. Andrologia 29:261–268PubMedCrossRefGoogle Scholar
  16. 16.
    Harayama H, Watanabe S, Masuda H, Kannan Y, Miyake M, Kato S (1998) Lectin- binding characteristics of extracts from epididymal boar spermatozoa. J Reprod Dev 44:21–27CrossRefGoogle Scholar
  17. 17.
    Magargee SF, Kunze E, Hammerstedt RH (1988) Changes in lectin-binding features of ram sperm surfaces associated with epididymal maturation and ejaculation. Biol Reprod 38:667–685PubMedCrossRefGoogle Scholar
  18. 18.
    Mahmoud A, Parrish JJ (1996) Changes in lectin binding to bovine sperm during heparin-induced capacitation. Mol Reprod Dev 44:525–532CrossRefGoogle Scholar
  19. 19.
    Jones R (1998) Plasma membrane structure and remodelling during sperm maturation in the epididymis. J Reprod Fert Suppl 53:73–84Google Scholar
  20. 20.
    Phopin K, Nimlamool W, Lowe-Krentz LJ, Douglass EW, Taroni JN, Bean BS (2013) Roles of mouse sperm-associated alpha-L-fucosidases in fertilization. Mol Reprod Dev 80:273–285PubMedCrossRefGoogle Scholar
  21. 21.
    Eddy EM, O’Brien DA (1993) The Spermatozoon. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven, New York, pp 29–77Google Scholar
  22. 22.
    Srivastava A, Olson GE (1991) Glycoprotein changes in the rat plasma membrane during maturation in the epididymis. Mol Reprod Dev 29:357–364PubMedCrossRefGoogle Scholar
  23. 23.
    Hammerstedt RH, Hay SR, Amann RP (1982) Modification of ram sperm membranes during epididymal transit. Biol Reprod 27:745–754PubMedCrossRefGoogle Scholar
  24. 24.
    Clark GF (2013) The role of carbohydrate recognition during human sperm-egg binding. Hum Reprod 28:566–577PubMedCrossRefGoogle Scholar
  25. 25.
    Nagdas SK, Winfrey VP, Olson GE (2002) Identification of ras and its downstream signaling elements and their potential role in hamster sperm motility. Biol Reprod 67:1058–1066PubMedCrossRefGoogle Scholar
  26. 26.
    Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607PubMedGoogle Scholar
  27. 27.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  28. 28.
    Wray W, Boulikas T, Wray VP, Hancock R (1981) Silver staining of proteins in polyacrylamide gels. Anal Biochem 118:197–203PubMedCrossRefGoogle Scholar
  29. 29.
    Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354PubMedCrossRefGoogle Scholar
  30. 30.
    NagDas SK, Winfrey VP, Olson GE (2005) Tyrosine phosphorylation generates multiple isoforms of the mitochondrial capsule protein, phospholipid hydroperoxide glutathione peroxidase (PHGPx), during hamster sperm capacitation. Biol Reprod 72:164–171PubMedCrossRefGoogle Scholar
  31. 31.
    Parrish JJ, Susko-Parrish J, Winer MA, First NL (1988) Capacitation of bovine sperm by heparin. Biol Reprod 38:1171–1180PubMedCrossRefGoogle Scholar
  32. 32.
    Lottenberg R, Christensen U, Jackson CM, Coleman PL (1981) Assay of coagulation proteases using chronogenic and fluorogenic substrates. Method Enzymol 80:341–361CrossRefGoogle Scholar
  33. 33.
    NagDas SK, Winfrey VP, Olson GE (1996) Identification of hydrolase binding activities of the acrosomal matrix of hamster spermatozoa. Biol Reprod 55:1405–1414PubMedCrossRefGoogle Scholar
  34. 34.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  35. 35.
    Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS (1995) Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 1121:1129–1137Google Scholar
  36. 36.
    Porambo JR, Salicioni AM, Visconti PE, Platt MD (2012) Sperm phosphoproteomics: historical perspectives and current methodologies. Expert Rev Proteomics 9:533–548PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Saccary L, She YM, Oko R, Kan FW (2013) Hamster oviductin regulates tyrosine phosphorylation of sperm proteins during in vitro capacitation. Biol Reprod 89:38PubMedCrossRefGoogle Scholar
  38. 38.
    Olson GE, Winfrey VP, Neff JC, Lukas TJ, NagDas SK (1997) An antigenically related polypeptide family is a major structural constituent of a stable acrosomal matrix assembly in bovine spermatozoa. Biol Reprod 57:325–334PubMedCrossRefGoogle Scholar
  39. 39.
    Khole V (2003) Epididymis as a target for contraception. Indian J Exp Biol 41:764–772PubMedGoogle Scholar
  40. 40.
    Dacheux JL, Belleannee C, Guyonnet B, Labas V, Teixeira-Gomes AP, Ecroyd H, Druart X, Gatti JL, Dacheux F (2012) The contribution of proteomics to understanding epididymal maturation of mammalian spermatozoa. Syst Biol Reprod Med 58:197–210PubMedCrossRefGoogle Scholar
  41. 41.
    Dun MD, Aitken RJ, Nixon B (2012) The role of molecular chaperones in spermatogenesis and the post-testicular maturation of mammalian spermatozoa. Hum Reprod Update 18:420–435PubMedCrossRefGoogle Scholar
  42. 42.
    Sullivan R, Saez F (2013) Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction 146:R21–R35PubMedCrossRefGoogle Scholar
  43. 43.
    Nicolson GL, Usui N, Yanagimachi R, Yanagimachi H, Smith JR (1977) Lectin-binding sites on the plasma membranes of rabbit spermatozoa. Changes in surface receptors during epididymal maturation and after ejaculation. J Cell Biol 74:950–962PubMedCrossRefGoogle Scholar
  44. 44.
    Nicolson GL, Bronginski AB, Beattie G, Yanagimachi R (1979) Cell surface changes in the proteins of rabbit spermatozoa during epididymal passage. Gamete Res 2:153–163CrossRefGoogle Scholar
  45. 45.
    Olson GE, Hamilton DW (1978) Characterization of the surface glycoproteins of rat spermatozoa. Biol Reprod 19:26–35PubMedCrossRefGoogle Scholar
  46. 46.
    Koehler JK (1981) Lectins as probes of the spermatozoan surface. Arch Androl 6:197–217PubMedCrossRefGoogle Scholar
  47. 47.
    Olson GE, Danzo BJ (1981) Surface changes in rat spermatozoa during epididymal transit. Biol Reprod 24:431–443PubMedCrossRefGoogle Scholar
  48. 48.
    Young LG, Gould KG, Hinton BT (1986) Lectin binding sites on the plasma membrane of epididymal and ejaculated chimpanzee sperm. Gamete Res 14:75–87CrossRefGoogle Scholar
  49. 49.
    Lee SH, Ahuja KK (1987) An investigation using lectins of glycocomponents of mouse spermatozoa during capacitation and sperm zona binding. J Reprod Fertil 80:65–74PubMedCrossRefGoogle Scholar
  50. 50.
    Rankin TL, Holland MK, Orgebin-Crist MC (1989) Lectin binding characteristics of mouse epididymal fluid and sperm extracts. Gamete Res 24:439–452PubMedCrossRefGoogle Scholar
  51. 51.
    Medeiros CMO, Parrish JJ (1996) Changes in lectin binding to bovine sperm during heparin-induced capacitation. Mol Reprod Dev 44:525–532PubMedCrossRefGoogle Scholar
  52. 52.
    Toyonaga M, Morita M, Hori T, Tsutsui T (2011) Distribution of glycoproteins on feline testicular sperm, epididymal sperm and ejaculated sperm. J Vet Med Sci 73:827–829PubMedCrossRefGoogle Scholar
  53. 53.
    Siiteri JE, Ensrud KM, Moore A, Hamilton DW (1995) Identification of osteopontin (OPN) mRNA and protein in the rat testis and epididymis, and on sperm. Mol Reprod Dev 40:16–28PubMedCrossRefGoogle Scholar
  54. 54.
    Zanich A, Pascall JC, Jones R (2003) Secreted glycoprotein 2D6 that binds to the sperm’s plasma membrane is a member of the β-defensin superfamily of pore-forming glycopeptides. Biol Reprod 69:1831–1842PubMedCrossRefGoogle Scholar
  55. 55.
    Rao J, Herr JC, Reddi PP, Wolkowicz MJ, Bush LA, Sherman NE, Black M, Flickinger CJ (2003) Cloning and characterization of a novel sperm-associated isoantigen (E-3) with defensin- and lectin-like motifs expressed in rat epididymis. Biol Reprod 68:290–301PubMedCrossRefGoogle Scholar
  56. 56.
    Michalkova K, Simon M, Antalikova J, Klima J, Horovska L, Jankovicova J, Hluchy S (2010) Identification of bovine CD52-like molecule by monoclonal antibody IV A-543: distribution of CD52-like molecule in the bull genital tract. Theriogenology 74:1066–1074PubMedCrossRefGoogle Scholar
  57. 57.
    Knoops B, Goemaere J, Eecken VV, Declercq J-P (2011) Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid Redox Signal 15:817–829PubMedCrossRefGoogle Scholar
  58. 58.
    Vernet P, Aitken RJ, Drevet JR (2004) Antioxidant strategies in the epididymis. Mol Cell Endocrinol 216:31–39PubMedCrossRefGoogle Scholar
  59. 59.
    O’Flaherty C, de Souza AR (2011) Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod 84:238–247PubMedCrossRefGoogle Scholar
  60. 60.
    Sanocka D, Kurpisz M (2004) Reactive oxygen species and sperm cells. Reprod Biol Endocrinol 2:12PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Oehninger S, Blackmore P, Mahony M, Hodgen G (1995) Effects of hydrogen peroxide on human spermatozoa. J Assist Reprod Genet 12:41–47PubMedCrossRefGoogle Scholar
  62. 62.
    Sikka SC, Rajasekaran M, Hellstrom WJ (1995) Role of oxidative stress and antioxidants in male infertility. J Androl 16:464–468PubMedGoogle Scholar
  63. 63.
    Hsieh YY, Chang CC, Lin CS (2006) Seminal malondialdehyde concentration but not glutathione peroxidase activity is negatively correlated with seminal concentration and motility. Int J Biol Sci 2:23–29PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Tremellen K (2008) Oxidative stress and male infertility—a clinical perspective. Hum Reprod 14:243–258CrossRefGoogle Scholar
  65. 65.
    Espino J, Bejarano I, Ortiz A, Lozano GM, Garcia JF, Pariente JA, Rodriguez AB (2010) Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil Steril 94:1915–1917PubMedCrossRefGoogle Scholar
  66. 66.
    Zini A, Garrels K, Phang D (2000) Antioxidant activity in the semen of fertile and infertile men. Urology 55:922–926PubMedCrossRefGoogle Scholar
  67. 67.
    O’Flaherty C, Breininger E, Beorlegui N, Beconi MT (2005) Acrosome reaction in bovine spermatozoa: role of reactive oxygen species and lactate dehydrogenase C4. Biochim Biophys Acta 1726:96–101PubMedCrossRefGoogle Scholar
  68. 68.
    Awda BJ, Mackenzie-Bell M, Buhr MM (2009) Reactive oxygen species and boar sperm function. Biol Reprod 81:553–561PubMedCrossRefGoogle Scholar
  69. 69.
    de Lamirande E, Lamothe G (2009) Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic Biol Med 46:502–510PubMedCrossRefGoogle Scholar
  70. 70.
    Park K, Jeon S, Song Y-J, Yi LSH (2012) Proteomic analysis of boar spermatozoa and quantity changes of superoxide dismutase 1, glutathione peroxidase, and peroxiredoxin 5 during epididymal maturation. Anim Reprod Sci 135:53–61PubMedCrossRefGoogle Scholar
  71. 71.
    Belleannee C, Calvo E, Caballero J, Sullivan R (2013) Epididymosomes convey different repertoires of microRNAs throughout the bovine epididymis. Biol Reprod 89:30PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Subir K. Nagdas
    • 1
  • Teresa Buchanan
    • 1
  • Samir Raychoudhury
    • 2
  1. 1.Department of Chemistry and PhysicsFayetteville State UniversityFayettevilleUSA
  2. 2.Department of Biology, Chemistry and Environmental Health ScienceBenedict CollegeColumbiaUSA

Personalised recommendations