Molecular and Cellular Biochemistry

, Volume 387, Issue 1–2, pp 91–100 | Cite as

Cotransplantation of human umbilical cord-derived mesenchymal stem cells and umbilical cord blood-derived CD34+ cells in a rabbit model of myocardial infarction

  • Tong Li
  • Qunxing Ma
  • Meng Ning
  • Yue Zhao
  • Yuelong Hou
Article

Abstract

The objective of the study is to investigate the effect of hypoxic preconditioning on the immunomodulatory properties of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and the effect of cotransplantation of hUC-MSCs and human umbilical cord blood (hUCB)-derived CD34+ cells in a rabbit model of myocardial infarction. hUC-MSCs with or without hypoxic preconditioning by cobalt chloride were plated in a 24-well plate, and then cocultured with hUCB-CD34+ cells and PBMCs for 96 h at 37 °C in a 5 % CO2 incubator. For the negative control, hUC-MSCs were omitted. The groups were divided as follows: A1 = HP-MSCs + hUCB-CD34+ cells + PBMC, A2 = hUC-MSCs + hUCB-CD34+ cells + PBMC, Negative Control = hUCB-CD34+ cells + PBMC. Culture supernatants of each group were collected, and the IL-10 and IFN-γ levels were measured by ELISA. A rabbit model of MI was established using a modified Fujita method. The animals were then randomized into three groups and received intramyocardial injections of 0.4 ml of PBS alone (n = 8, PBS group), hUC-MSCs in PBS (n = 8, hUC-MSCs group), or hUC-MSCs + CD34+ cells in PBS (n = 8, Cotrans group), at four points in the infarct border zone. Echocardiography was performed at baseline, 4 weeks after MI induction, and 4 weeks after cell transplantation, respectively. Stem cell differentiation and neovascularization in the infracted area were characterized for the presence of cardiac Troponin I (cTnI) and CD31 by immunohistochemical staining, and the extent of myocardial fibrosis was evaluated by hematoxylin and eosin (H&E) and Masson’s trichrome. IFN-γ was 27.00 ± 1.11, 14.20 ± 0.81, and 7.22 ± 0.14 pg/ml, and IL-10 was 31.68 ± 3.08, 61.42 ± 1.08, and 85.85 ± 1.80 pg/ml for the Control, A1 and A2 groups, respectively, which indicated that hUCB-CD34+ cells induced immune reaction of peripheral blood mononuclear cells, whereas both hUC-MSCs and HP-MSCs showed an immunosuppressive effect, which, however, was attenuated by hypoxic preconditioning. The Cotrans group had less collagen deposition in the infarcted myocardium and better heart function than the hUC-MSCs or PBS group. The presence of cTnI-positive cells and CD31-positive tubular structures indicated the differentiation of stem cells into cardiomyocytes and neovascularization. The microvessel density was 12.19 ± 3.05/HP for the hUC-MSCs group and 31.63 ± 2.45/HP for the Cotrans group, respectively (P < 0.01). As a conclusion, both hUC-MSCs and HP-MSCs have an immunosuppressive effect on lymphocytes, which, however, can be attenuated by hypoxic preconditioning. Cotransplantation of hUC-MSCs and hUCB-CD34+ cells can improve heart function and decrease collagen deposition in post-MI rabbits. Thus, a combined regimen of hUC-MSCs and hUCB-CD34+ cells would be more desirable than either cells administered alone. This is most likely due to the increase of cardiomyocytes and enhanced angiogenesis in the infarcted myocardium.

Keywords

Myocardial Infarction Umbilical cord mesenchymal stem cells Umbilical cord blood-derived CD34+ Cells Cotransplantation 

References

  1. 1.
    Yang Jinfu, Zhou Wenwu, Zheng Wei, Ma Yanlin, Lin Ling, Tang Tao, Liu Jianxin, Jiefeng Yu, Zhou Xinmin, Jianguo Hu (2007) Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for the improvement of heart function and angiogenesis after myocardial infarction. Cardiology 107:17–29. doi:10.1159/000093609 PubMedCrossRefGoogle Scholar
  2. 2.
    Mathieu Eva, Lamirault Guillaume, Toquet Claire, Lhommet Pierre, Rederstorff Emilie, Sourice Sophie, Biteau Kevin, Hulin Philippe, Forest Virginie, Weiss Pierre, Guicheux Jérôme, Lemarchand Patricia (2012) Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One 7(12):e51991. doi:10.1371/journal.pone.0051991 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Zhang J, Chen G-H, Wang Y-W, Zhao J, Duan H-F, Liao L-M, Zhang X-Z, Chen Y-D, Hu C (2012) Hydrogen peroxide preconditioning enhances the therapeutic efficacy of Wharton’s Jelly mesenchymal stem cells after myocardial infarction. Chin Med J 125(19):3472–3478. doi:10.3760/cma.j.issn.0366-6999.2012.19.020 PubMedGoogle Scholar
  4. 4.
    Latifpour M, Nematollahi-Mahani SN, Deilamy M, Azimzadeh BS, Eftekhar- Vaghefi SH, Nabipour F, Najafipour H, Nakhaee N, Yaghoubi M, Eftekhar-Vaghefi R, Salehinejad P, Azizi H (2011) Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells. Cardiology 120(1):9–18. doi:10.1159/000332581 PubMedGoogle Scholar
  5. 5.
    Wang J, Zhang S, Rabinovich B, Bidaut L, Soghomonyan S, Alauddin MM, Bankson JA, Shpall E, Willerson JT, Gelovani JG, Yeh ET (2010) Human CD34 cells in experimental myocardial infarction long-term survival, sustained functional improvement, and mechanism of action. Circ Res 106:1904–1911. doi:10.1161/CIRCRESAHA.110.221762 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Hu CH, Li ZM, Du ZM, Zhang AX, Rana JS, Liu DH, Yang DY, Wu GF (2010) Expanded human cord blood-derived endothelial progenitor cells salvage infarcted myocardium in rats with acute myocardial infarction. Clin Exp Pharmacol Physiol 37(5–6):551–556. doi:10.1111/j.1440-1681.2010.05347.x PubMedCrossRefGoogle Scholar
  7. 7.
    Pinho-Ribeiro V, Maia AC, Werneck-de-Castro JP, Oliveira PF, Goldenberg RC, Carvalho AC (2010) Human umbilical cord blood cells in infarcted rats. Braz J Med Biol Res 43(3):290–296PubMedCrossRefGoogle Scholar
  8. 8.
    Lee WY, Tsai HW, Chiang JH, Hwang SM, Chen DY, Hsu LW, Hung YW, Chang Y, Sung HW (2011) Core-shell cell bodies composed of human cbMSCs and HUVECs for functional vasculogenesis. Biomaterials 32(33):8446–8455. doi:10.1016/j.biomaterials.2011.07.061 PubMedCrossRefGoogle Scholar
  9. 9.
    Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Müller-Hilke B, Zhang L, Ladilov Y, Egger D, Steinhoff G (2005) Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 66(1):45–54. doi:10.1016/j.cardiores.2004.12.013 PubMedCrossRefGoogle Scholar
  10. 10.
    Schlechta B, Wiedemann D, Kittinger C, Jandrositz A, Bonaros NE, Huber JC, Preisegger KH, Kocher AA (2010) Ex-vivo expanded umbilical cord blood stem cells retain capacity for myocardial regeneration. Circ J 74(1):188–194. doi:10.1253/circj.CJ-09-0409 PubMedCrossRefGoogle Scholar
  11. 11.
    Barclay GR, Tura O, Samuel K, Hadoke PW, Mills NL, Newby DE, Turner ML (2012) Systematic assessment in an animal model of the angiogenic potential of different human cell sources for therapeutic revascularization. Stem Cell Res Ther 3(4):23. doi:10.1186/scrt114 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Xinyang Hu, Shan Ping Yu, Fraser JL, Lu Z, Ogle ME, Wang JA, Wei L (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and Angiogenesis. J Thorac Cardiovasc Surg 135(4):799–808. doi:10.1016/j.jtcvs.2007.07.071 CrossRefGoogle Scholar
  13. 13.
    Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J, Guan F (2011) Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol 272(1):33–38. doi:10.1016/j.cellimm.2011.09.010 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D, McIntosh KR (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26:2865–2874. doi:10.1634/stemcells.2007-1028 PubMedCrossRefGoogle Scholar
  15. 15.
    Fujita M, Morimoto Y, Ishihara M, Shimizu M, Takase B, Maehara T, Kikuchi M (2004) A new rabbit model of myocardial infarction without endotracheal intubation. J Surg Res 116(1):124–128PubMedCrossRefGoogle Scholar
  16. 16.
    Rainsford E, Reen DJ (2002) Interleukin 10, produced in abundance by human newborn T cells, may be the regulator of increased tolerance associated with cord blood stem cell transplantation. Br J Haematol 116(3):702–709PubMedCrossRefGoogle Scholar
  17. 17.
    English K, Barry FP, Field-Corbett CP, Mahon BP (2007) IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett 110(2):91–100. doi:10.1016/j.imlet.2007.04.001 PubMedCrossRefGoogle Scholar
  18. 18.
    Schneider C, Jaquet K, Geidel S, Rau T, Malisius R, Boczor S, Zienkiewicz T, Kuck KH, Krause K (2009) Transplantation of bone marrow-derived stem cells improves myocardial diastolic function: strain rate imaging in a model of hibernating myocardium. J Am Soc Echocardiogr 22(10):1180–1189. doi:10.1016/j.echo.2009.06.011 PubMedCrossRefGoogle Scholar
  19. 19.
    Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marbán E (2013) Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse. EMBO Mol Med 5(2):191–209. doi:10.1002/emmm.201201737 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Takeda Y, Mori T, Imabayashi H, Kiyono T, Gojo S, Miyoshi S, Hida N, Ita M, Segawa K, Ogawa S, Sakamoto M, Nakamura S, Umezawa A (2004) Can the life span of human marrow stromal cells be prolonged by bmi-1, E6, E7, and/or telomerase without affecting cardiomyogenic differentiation? J Gene Med 6(8):833–845. doi:10.1002/jgm.583 PubMedCrossRefGoogle Scholar
  21. 21.
    Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW, Hare JM (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127(2):213–223. doi:10.1161/CIRCULATIONAHA.112.131110 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Huang NF, Lam A, Fang Q, Sievers RE, Li S, Lee RJ (2009) Bone marrow-derived mesenchymal stem cells in fibrin augment angiogenesis in the chronically infarcted myocardium. Regen Med 4(4):527–538. doi:10.2217/rme.09.32 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Zhou Y, Wang S, Yu Z, Hoyt RF Jr, Qu X, Horvath KA (2011) Marrow stromal cells differentiate into vasculature after allogeneic transplantation into ischemic myocardium. Ann Thorac Surg 91(4):1206–1212. doi:10.1016/j.athoracsur.2011.01.021 PubMedCrossRefGoogle Scholar
  24. 24.
    Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, Sobel BE, Delafontaine P, Prockop DJ (2007) Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 354(3):700–706. doi:10.1016/j.bbrc.2007.01.045 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Sato T, Iso Y, Uyama T, Kawachi K, Wakabayashi K, Omori Y, Soda T, Shoji M, Koba S, Yokoyama S, Fukuda N, Saito S, Katagiri T, Kobayashi Y, Takeyama Y, Umezawa A, Suzuki H (2011) Coronary vein infusion of multipotent stromal cells from bone marrow preserves cardiac function in swine ischemic cardiomyopathy via enhanced neovascularization. Lab Invest 91(4):553–564. doi:10.1038/labinvest.2010.202 PubMedCrossRefGoogle Scholar
  26. 26.
    Schneider RK, Neuss S, Knüchel R, Perez-Bouza A (2010) Mesenchymal stem cells for bone tissue engineering. Pathologe Suppl 2:138–146. doi:10.1007/s00292-010-1329-7 CrossRefGoogle Scholar
  27. 27.
    Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li W, Zhao X, Liu K (2011) Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep 38(8):5161–5168. doi:10.1007/s11033-010-0665-2 PubMedCrossRefGoogle Scholar
  28. 28.
    Chen X, Zhang F, He X, Xu Y, Yang Z, Chen L, Zhou S, Yang Y, Zhou Z, Sheng W, Zeng Y (2013) Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering. Injury 44(4):540–549. doi:10.1016/j.injury.2012.09.024 PubMedCrossRefGoogle Scholar
  29. 29.
    Lu L-L, Liu Y-J, Yang S-G, Zhao Q-J, Wang X, Gong W, Han Z-B, Zhen-Shu X, Lu Y-X, Liu D, Chen Z-Z, Han Z-C (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91(8):1017–1026PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tong Li
    • 1
  • Qunxing Ma
    • 1
    • 2
  • Meng Ning
    • 1
  • Yue Zhao
    • 1
  • Yuelong Hou
    • 1
  1. 1.Tianjin Third Central HospitalTianjinChina
  2. 2.The Third Central Clinical College of Tianjin Medical UniversityTianjinChina

Personalised recommendations